Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T14:13:08.808Z Has data issue: false hasContentIssue false

The effect on the rumen composition of feeding sheep diets supplying different starches. I. The variation in rumen composition of sheep fed lucerne or wheat as the sole diet

Published online by Cambridge University Press:  27 March 2009

K. C. Chou
Affiliation:
Department of Animal Husbandry, University of Sydney, Australia
D. M. Walker
Affiliation:
Department of Animal Husbandry, University of Sydney, Australia

Extract

1. Three fistulated and four unfistulated crossbred sheep were each fed once daily with diets of lucerne or wheat.

2. A pre-feeding sample of the rumen liquid was examined for its content of protozoa, of various chemical components and for its enzymic activity on glucose and on soluble starch. Several samples were taken from each sheep at intervals over periods of up to 8 weeks, during which time the sheep were maintained solely on the single diet.

3. Considerable variation occurred, both between sheep and between samples from the same sheep, in the concentrations of ciliate protozoa and of lactic acid, especially on the wheat diet.

4. Analyses for nitrogen, pH, dissolved C02, volatile fatty acids and for the molar proportions of acetic and propionic acid showed differences due to diet.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annison, E. F. (1954). Biochem. J. 57, 400.CrossRefGoogle Scholar
, A.O.A.C. (1950). Official and Tentative Methods of Analysis, 7th ed.Washington, D.C.Google Scholar
Balch, C. C., Balch, D. A., Bartlett, S., Babtrum, M. P., Johnson, V. W., Rowland, S. J. & Turner, J. (1955). J. Dairy Res. 22, 270.CrossRefGoogle Scholar
Balch, D. A. (1958). Brit. J. Nutr. 12, 18.CrossRefGoogle Scholar
Balch, D. A. & Rowland, S. J. (1957). Brit. J. Nutr. 11, 288.CrossRefGoogle Scholar
Barker, S. B. & Summerson, W. H. (1941). J. Biol. Chem. 138, 535.CrossRefGoogle Scholar
Boyne, A. W., Eabie, J. M. & Raitt, K. (1957). J. Gen. Microbiol. 17, 414.CrossRefGoogle Scholar
Brown, W. H., Leffel, E. L. & Lakshmanan, S. (1958). J. Anim. Sci. 17, 1191.CrossRefGoogle Scholar
Brown, W. H., Stull, J. W. & Stott, G. H. (1962) J. Dairy Sci. 45, 191.CrossRefGoogle Scholar
Card, C. S. & Schultz, L. H. (1953) J. Dairy Sci. 36, 599.Google Scholar
Clegg, K. M. (1956). J. Sci. Fd Agric. 7, 40.CrossRefGoogle Scholar
Conway, E. J. (1950). Microdiffusion Analysis and Volumetric Error, 3rd ed.London: Crosby Lockwood and Son Ltd.Google Scholar
Davenport, E. (1897). Bull. Ill. Agric. Exp. Sta. no. 46.Google Scholar
James, A. T. & Martin, A. J. P. (1952). Biochem. J. 50, 679.CrossRefGoogle Scholar
McAnally, R. A. (1944). J. Exp. Biol. 20, 130.CrossRefGoogle Scholar
McDonald, I. W. (1952). Biochem. J. 51, 86.CrossRefGoogle Scholar
Phillipson, A. T. (1952). Brit. J. Nutr. 6, 190.CrossRefGoogle Scholar
Purser, D. B. & Mora, R. J. (1959). Aust. J. Agric. Res. 10, 555.CrossRefGoogle Scholar
Reid, R. L., Hogan, J. P. & Briggs, P. K. (1957). Aust. J. Agric. Res. 8, 691.CrossRefGoogle Scholar
Sanborn, J. W. (1893). Bull. Utah Agric. Exp. Sta. no. 21.Google Scholar
Shaffer, P. A. & Hartmann, A. F. (19201921). J. Biol. Chem. 45, 365.CrossRefGoogle Scholar
Walker, D. M. & Walker, G. J. (1961). J. Agric. Sci. 57, 271.CrossRefGoogle Scholar
Warner, A. C. I. (1956). J. Gen. Microbiol. 14, 733.CrossRefGoogle Scholar