Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T09:48:07.918Z Has data issue: false hasContentIssue false

The effect of rumen-protected methionine and choline on plasma metabolites of Holstein dairy cows

Published online by Cambridge University Press:  14 January 2011

M. ARDALAN*
Affiliation:
Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, P.O. Box 31587-77871, Karaj, Iran
M. DEHGHAN-BANADAKY
Affiliation:
Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, P.O. Box 31587-77871, Karaj, Iran
K. REZAYAZDI
Affiliation:
Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, P.O. Box 31587-77871, Karaj, Iran
N. GHAVI HOSSEIN-ZADEH
Affiliation:
Department of Animal Science, Faculty of Agriculture, University of Guilan, P.O. Box 41635-1314, Rasht, Iran
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Forty Holstein dairy cows in their first and second lactations were used from 4 weeks prepartum to 10 weeks postpartum to investigate the effects of feeding ruminally protected methionine and choline on plasma metabolites. Cows were randomly assigned to one of the following treatments in a 2×2 factorial design 4 weeks before their expected calving dates, using randomized blocks based on parity: no supplement (control), 18 g/d of rumen-protected methionine (RPM) product, 60 g/d of rumen-protected choline (RPC) product, or 18 g/d of RPM+60 g/d of RPC. Treatments did not affect plasma triglycerides, glucose, total protein, nonesterified fatty acids (NEFA), β-hydroxybutyrate (BHBA), plasma urea nitrogen (PUN) or aspartate aminotransferase (AST) during the prepartum period. For postpartum plasma NEFA concentrations, there were interactions between RPC or RPM and week postpartum. Feeding RPM increased plasma AST concentrations (P<0·05) and decreased plasma protein concentrations (P<0·05) in postpartum cows. After calving, feeding RPC increased (P<0·05) dry matter intake (DMI), milk yield, 40 g/kg fat-corrected milk (FCM) yield and energy-corrected milk (ECM) yield. This suggests that supplemental RPC can improve lactation performance of dairy cows.

Type
Animals
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

AOAC (Association of Official Analytical Chemists). (2000). Official Methods of Analysis, 17th edn. Gaithersburg MD: AOAC.Google Scholar
Atkins, K. B., Erdman, R. A. & Vandersall, J. H. (1988). Dietary choline effects on milk yield and duodenal choline flow in dairy cattle. Journal of Dairy Science 71, 109116.CrossRefGoogle ScholarPubMed
Bateman, H. G., Spain, J. N., Kerley, M. S., Belyea, R. L. & Marshall, R. T. (1999). Evaluation of ruminally protected methionine and lysine or blood meal and fish meal as protein sources for lactating Holsteins. Journal of Dairy Science 82, 21152120.CrossRefGoogle ScholarPubMed
Bell, A. W. (1995). Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. Journal of Animal Science 73, 28042819.CrossRefGoogle ScholarPubMed
Brüsemeister, F. & Südekum, K.-H. (2006). Rumen-protected choline for dairy cows: the in situ evaluation of a commercial source and literature evaluation of effects on performance and interactions between methionine and choline metabolism. Animal Research 55, 93104.CrossRefGoogle Scholar
Cooke, R. F., Silva Del Rio, N., Caraviello, D. Z., Bertics, S. J., Ramos, M. H. & Grummer, R. R. (2007). Supplemental choline for prevention and alleviation of fatty liver in dairy cattle. Journal of Dairy Science 90, 24132418.CrossRefGoogle ScholarPubMed
Coverdale, J. A., Tyler, H. D., Quigley, J. D. & Brumm, J. A. (2004). Effect of various levels of forage and form of diet on rumen development and growth in calves. Journal of Dairy Science 87, 25542562.CrossRefGoogle ScholarPubMed
Davidson, S., Hopkins, B. A., Odle, J., Brownie, C., Fellner, V. & Whitlow, L. W. (2008). Supplementing limited methionine diets with rumen-protected methionine, betaine, and choline in early lactation Holstein cows. Journal of Dairy Science 91, 15521559.CrossRefGoogle ScholarPubMed
Dawson, R. M. C., Grime, D. W. & Lindsay, D. K. (1981). On the insensitivity of sheep to the almost complete microbial destruction of dietary choline before alimentary-tract absorption. Biochemistry Journal 196, 499504.CrossRefGoogle Scholar
DeFrain, J. M., Hippen, A. R., Kalscheur, K. F. & Schingoethe, D. J. (2006). Feeding lactose to increase ruminal butyrate and the metabolic status of transition dairy cows. Journal of Dairy Science 89, 267276.CrossRefGoogle ScholarPubMed
Durand, D., Chilliard, Y. & Bauchart, D. (1992). Effects of lysine and methionine on in vivo hepatic secretion of VLDL in the high yielding dairy cow. Journal of Dairy Science 75 (Suppl. 1), 279.Google Scholar
Emery, R. S., Liesman, J. S. & Herdt, T. H. (1992). Metabolism of long-chain fatty acids by ruminant liver. Journal of Nutrition 122, (Suppl. 3), 832837.CrossRefGoogle ScholarPubMed
Emmanuel, B. & Kennelly, J. J. (1984). Kinetics of methionine and choline and their incorporation into plasma lipids and milk components in lactating goats. Journal of Dairy Science 67, 19121918.CrossRefGoogle ScholarPubMed
Erdman, R. A. (1992). Vitamins. In Large Dairy Herd Management (Eds Van Horn, H. H. & Wilcox, C. J.), pp. 297308. Champaign, IL: American Dairy Science Association.Google Scholar
Erdman, R. A. & Sharma, B. K. (1991). Effect of dietary rumen-protected choline in lactating dairy cows. Journal of Dairy Science 74, 16411647.CrossRefGoogle ScholarPubMed
Fox, D. G., Tedeschi, L. O., Tylutki, T. P., Russell, J. B., Van Amburgh, M. E., Chase, L. E., Pell, A. N. & Overton, T. R. (2004). The Cornell net carbohydrate and protein system model for evaluating herd nutrition and nutrient excretion. Animal Feed Science and Technology 112, 2978.CrossRefGoogle Scholar
Gaines, W. L. (1928). The Energy Basis of Measuring Milk Yield in Dairy Cows. Illinois Agricultural Experiment Station Bulletin 308. Illinois, USA: University of Illinois.Google Scholar
Girard, C. L., Lapierre, H., Matte, J. J. & Lobley, G. E. (2005). Effects of dietary supplements of folic acid and rumen-protected methionine on lactational performance and folate. Journal of Dairy Science 88, 660670.CrossRefGoogle ScholarPubMed
Grummer, R. R. (1993). Etiology of lipid-related metabolic disorder in periparturient dairy cows. Journal of Dairy Science 76, 38823896.CrossRefGoogle ScholarPubMed
Hartwell, J. R., Cecava, M. J. & Donkin, S. S. (2000). Impact of dietary rumen undegradable protein and rumen-protected choline on intake, peripartum liver triacylglyceride, plasma metabolites and milk production in transition dairy cows. Journal of Dairy Science 83, 29072917.CrossRefGoogle ScholarPubMed
Janovick Guretzky, N. A., Carlson, D. B., Garrett, J. E. & Drackley, J. K. (2006). Lipid metabolite profiles and milk production for Holstein and Jersey cows fed rumen-protected choline during the periparturient period. Journal of Dairy Science 89, 188200.CrossRefGoogle Scholar
Kida, K. (2002). Use of every ten-day criteria for metabolic profile test after calving and dry off in dairy herds. Journal of Veterinary Medical Science 64, 10031010.CrossRefGoogle ScholarPubMed
Kröber, T. F., Kreuzer, M., Senn, M., Langhans, W. & Sutter, F. (2000). Effects of rumen-protected methionine in a low protein ration on metabolic traits and performance of early lactating cows as opposed to rations with elevated crude protein content. Journal of Animal Physiology and Animal Nutrition 84, 148164.CrossRefGoogle Scholar
Kuksis, A. & Mookerjea, S. (1978). Choline. Nutrition Reviews 36, 201207.CrossRefGoogle ScholarPubMed
Lara, A., Mendoza, G. D., Landois, L., Barcena, R., Sanchez-Torres, M. T., Rojo, R., Ayala, J. & Vega, S. (2006). Milk production in Holstein cows supplemented with different levels of ruminally protected methionine. Livestock Science 105, 105108.CrossRefGoogle Scholar
National Research Council. (2001). Nutrient Requirements of Dairy Cattle. 7th edn. Washington, DC: National Academy Press.Google Scholar
Overton, T. R. & Waldron, M. R. (2004). Nutritional management of transition dairy cows: Strategies to optimizemetabolic health. Journal of Dairy Science 87 (E Suppl) E105E119.CrossRefGoogle Scholar
Overton, T. R., LaCount, D. W., Cicela, T. M. & Clark, J. H. (1996). Evaluation of a ruminally protected methionine product for lactating dairy cows. Journal of Dairy Science 79, 631638.CrossRefGoogle ScholarPubMed
Overton, T. R., Emmert, L. S. & Clark, J. H. (1998). Effects of source of carbohydrate and protein and rumen-protected methionine on performance of cows. Journal of Dairy Science 81, 221228.CrossRefGoogle ScholarPubMed
Piepenbrink, M. S. & Overton, T. R. (2003). Liver metabolism and production of cows fed increasing amounts of rumen-protected choline during the periparturient period. Journal of Dairy Science 86, 17221733.CrossRefGoogle ScholarPubMed
Pinotti, L., Baldi, A. & Dell'Orto, V. (2002). Comparative mammalian choline metabolism with emphasis on the high-yielding dairy cow. Nutrition Research Review 15, 315331.CrossRefGoogle ScholarPubMed
Roseler, D. K., Ferguson, J. D., Sniffen, C. J. & Herrema, J. (1993). Dietary protein degradability effects on plasma and milk urea nitrogen and milk non protein nitrogen in Holstein cows. Journal of Dairy Science 76, 525534.CrossRefGoogle Scholar
SAS. (2002). SAS User's Guide v. 9.1: Statistics. Cary, NC: SAS Institute, Inc.Google Scholar
Socha, M. T., Putnam, D. E., Garthwaite, B. D., Whitehouse, N. L., Kierstead, N. A., Schwab, C. G., Ducharme, G. A. & Robert, J. C. (2005). Improving intestinal amino acid supply of pre- and postpartum dairy cows with rumen-protected methionine and lysine. Journal of Dairy Science 88, 11131126.CrossRefGoogle ScholarPubMed
Strzetelski, J. A., Kowalski, Z. M., Kowalczyk, J., Borowiec, F., Osięglowski, S. & Ślusarczyk, K. (2009). Protected methionine as a methyl-group donor for dairy cows fed diets with different starch sources in the transition period. Journal of Animal and Feed Sciences 18, 2841.CrossRefGoogle Scholar
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.CrossRefGoogle Scholar
Yao, Z. M. & Vance, D. E. (1988). The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes. Journal of Biological Chemistry 263, 29983004.CrossRefGoogle ScholarPubMed
Zahra, L. C., Duffield, T. F., Leslie, K. E., Overton, T. R., Putnam, D. & LeBlank, S. J. (2006). Effects of rumen-protected choline and monensin on milk production and metabolism of periparturient dairy cows. Journal of Dairy Science 89, 48084818.CrossRefGoogle ScholarPubMed
Zeisel, S. H. (1988). Vitamin-like molecules. In Modern Nutrition and Health and Disease (Eds Shils, M. E. & Young, V. R.), pp. 440452. Philadelphia, PA: Lea & Febiger.Google Scholar