Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T19:39:41.076Z Has data issue: false hasContentIssue false

The effect of lime pre-treatments of date palm leaves on delignification and in vitro rumen degradability

Published online by Cambridge University Press:  30 August 2016

M. GHORBANI
Affiliation:
Department of Environmental Engineering, Shiraz University, Shiraz, Iran
F. AHMADI*
Affiliation:
Division of Food Biosciences, College of Medical Life Sciences, Konkuk University, Chung-Ju, Chung-Buk 380–701, South Korea
A. RAJAEE RAD
Affiliation:
Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156–83111, Iran
M. J. ZAMIRI
Affiliation:
Department of Animal Science, College of Agriculture, Shiraz University, 71441–65186, Shiraz, Iran
J. W. CONE
Affiliation:
Animal Nutrition Group, Department of Animal Sciences, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
I. POLIKARPOV
Affiliation:
Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13560–970, Brazil
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Experiments were conducted to determine the effect of lime pre-treatment on the chemical composition and in vitro rumen degradability of date palm leaves (DPL). Lime pre-treatments, with or without oxygen supply, were applied for 1, 2 and 3 weeks at 25 and 40 °C. Lime was neutralized by the Calcium-Capturing-by-Carbonation process. Delignification and in vitro rumen gas production were significantly influenced by duration, temperature and oxygen. At 40 °C, oxygen presence stimulated more delignification and subsequently increased in vitro rumen degradability. Lime pre-treatment with 0·2 g calcium hydroxide (Ca(OH)2)/g dry biomass for 3 weeks at 40 °C in the presence of oxygen resulted in a 3-fold increase in gas production after 24 h of incubation, compared with untreated biomass. Lime treatment of DPL with aeration resulted in higher lignin removal and subsequent rumen degradability than without aeration. A techno-economic analysis is needed to select the most efficient and economically feasible pre-treatment procedure.

Type
Animal Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahmadi, F., Rajaee Rad, A., Holtzapple, M. T. & Zamiri, M. J. (2013). Short-term oxidative lime pretreatment of palm pruning waste for use as animal feedstuff. Journal of the Science of Food and Agriculture 93, 20612070.CrossRefGoogle ScholarPubMed
Barreveld, W. H. (1993). Date Palm Products. Rome: FAO.Google Scholar
Buanafina, M. M. O., Langdon, T., Hauck, B., Dalton, S. & Morris, P. (2008). Expression of a fungal ferulic acid esterase increases cell wall digestibility of tall fescue (Festuca arundinacea). Plant Biotechnology Journal 6, 264280.CrossRefGoogle ScholarPubMed
Chen, Y., Stevens, M. A., Zhu, Y., Holmes, J. & Xu, H. (2013). Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnology for Biofuels 6, 8. DOI: 10.1186/1754-6834-6-8.CrossRefGoogle ScholarPubMed
Ding, S.-Y., Liu, Y.-S., Zeng, Y., Himmel, M. E., Baker, J. O. & Bayer, E. A. (2012). How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338, 10551060.Google Scholar
Gandi, J., Holtzapple, M. T., Ferrer, A., Byers, F. M., Turner, N. D., Nagwani, M. & Chang, S. (1997). Lime treatment of agricultural residues to improve rumen digestibility. Animal Feed Science and Technology 68, 195211.CrossRefGoogle Scholar
Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W. & Foust, T. D. (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315, 804807.Google Scholar
Holtzapple, M. T., Davison, R. R., Ross, M. K., Aldrett-Lee, S., Nagwani, M., Lee, C. M., Lee, C., Adelson, S., Kaar, W., Gaskin, D., Shirage, H., Chang, N. S., Chang, V. S. & Loescher, M. E. (1999). Biomass conversion to mixed alcohol fuels using the MixAlco process. Applied Biochemistry and Biotechnology 79, 609631.Google Scholar
Kim, S. & Holtzapple, M. T. (2005). Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresource Technology 96, 19942006.Google Scholar
Kim, S. H. (2004). Lime pretreatment and enzymatic hydrolysis of corn stover. Ph. D Thesis, Texas A & M University.Google Scholar
Lopez, R., Poblano, V. M., Licea-Claverie, A., Avalos, M., Alvarez-Castillo, A. & Castano, V. M. (2000). Alkaline surface modification of sugar cane bagasse. Advanced Composite Materials 9, 99108.Google Scholar
McDonough, T. J. (1996). Oxygen delignification. In Pulp Bleaching: Principles and Practice (Eds Dence, C. W. & Reeve, D. W.), pp. 213239. Atlanta, GA: TAPPI Press.Google Scholar
Meale, S. J., Beauchemin, K. A., Hristov, A. N., Chaves, A. V. & McAllister, T. A. (2014). Board-invited review: opportunities and challenges in using exogenous enzymes to improve ruminant production. Journal of Animal Science 92, 427442.Google Scholar
Menke, K. H. & Steingass, H. (1988). Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28, 755.Google Scholar
Menke, K. H., Raab, L., Salewski, A., Steingass, H., Fritz, D. & Schneider, W. (1979). The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro . Journal of Agricultural Science, Cambridge 93, 217222.Google Scholar
NRC (1984). Nutrient Requirements of Beef Cattle, 6th revised edn. Washington, DC: National Academy Press.Google Scholar
Park, J.-Y., Shiroma, R., Al-Haq, M. I., Zhang, Y., Ike, M., Arai-Sanoh, Y., Ida, A., Kondo, M. & Tokuyasu, K. (2010). A novel lime pretreatment for subsequent bioethanol production from rice straw – Calcium capturing by carbonation (CaCCO) process. Bioresource Technology 101, 68056811.CrossRefGoogle ScholarPubMed
Rajaee Rad, A., Ahmadi, F., Mohammadabadi, T., Ziaee, E. & Polikarpov, I. (2015). Combination of sodium hydroxide and lime as a pretreatment for conversion of date palm leaves into a promising ruminant feed: an optimization approach. Waste and Biomass Valorization 6, 243252.CrossRefGoogle Scholar
Rezende, C. A., De Lima, M. A., Maziero, P., de Azevedo, E. R., Garcia, W. & Polikarpov, I. (2011). Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnology for Biofuels 4, 54. DOI: 10.1186/1754-6834-4-54.Google Scholar
SAS (2003). User's Guide: Statistics, Version 9.1. Cary, NC: SAS Institute Inc.Google Scholar
Sierra, R., Granda, C. B. & Holtzapple, M. T. (2009). Lime pretreatment. In Biofuels: Methods and Protocols (Ed. Mielenz, J. R.), pp. 115124. Methods in Molecular Biology, Vol. 581. New York: Humana Press.Google Scholar
Sierra, R., Holtzapple, M. T. & Granda, C. B. (2011). Long-term lime pretreatment of poplar wood. AIChE Journal 57, 13201328.CrossRefGoogle Scholar
Steingass, H. (1983). Bestimmung des energetischen Futtenvertes von wirtschaftseigenen Futtennitteln aus der Gasbildung bei der Pansenfermentation in vitro . Ph.D. Thesis, University of Hohenheim, Germany.Google Scholar
Tao, L., Aden, A., Elander, R. T., Pallapolu, V. R., Lee, Y. Y., Garlock, R. J., Balan, V., Dale, B. E., Kim, Y., Mosier, N. S., Ladisch, M. R., Falls, M., Holtzapple, M. T., Sierra, R., Shi, J., Ebrik, M. A., Redmond, T., Yang, B., Wyman, C. E., Hames, B., Thomas, S. & Warner, R. E. (2011). Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresource Technology 102, 1110511114.Google Scholar
Tsuchida, J. E., Rezende, C. A., de Oliveira-Silva, R., Lima, M. A., d'Eurydice, M. N., Polikarpov, I. & Bonagamba, T. J. (2014). Nuclear magnetic resonance investigation of water accessibility in cellulose of pretreated sugarcane bagasse. Biotechnology for Biofuels 7, 127. DOI: 10.1186/s13068-014-0127-5.Google ScholarPubMed
Van Soest, P. J., Robertson, J. B. & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74, 35833597.Google Scholar