Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-22T09:43:45.526Z Has data issue: false hasContentIssue false

Drought resistance of hard wheat cultivars measured by a rapid chlorophyll fluorescence test

Published online by Cambridge University Press:  27 March 2009

M. Havaux
Affiliation:
Laboratoire de Physiologie Végéale Université Libre de Bruxelles28 avenue Paul Heger, 1050 Bruxelles, Belgium
R. Lannoye
Affiliation:
Laboratoire de Physiologie Végéale Université Libre de Bruxelles28 avenue Paul Heger, 1050 Bruxelles, Belgium

Summary

Disks of hard wheat (Triticum durum Desf.) leaves subjected to rapid desiccation over 4 h showed noticeable changes in the shape of the in vivo chlorophyll fluorescence induction curves. In drought-sensitive varieties (such as Claridoc), water stress resulted in a strong inhibition of the slow fluorescence induction transients. In particular, the fluorescence quenching rate was markedly decreased in water-stressed leaf disks. In contrast, leaves of drought-resistant varieties (such as Aouedj) showed only minor changes in chlorophyll fluorescence. The results of this investigation suggest that the slow transient of the in vivo chlorophyll fluorescence induction phenomenon may provide a simple method for selecting drought-tolerant wheats.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barber, J., Horler, D. N. H. & Chapman, D. J. (1981). Photosynthetic pigments and efficiency in relation to the spectral quality of absorbed light. In Plants and the Daylight Spectrum (ed. Smith, H.), pp. 341354. New York: Academic Press.Google Scholar
Bradbury, M. & Baker, N. B. (1981). Analysis of the slow phases of the in vivo chlorophyll fluorescence induction curve. Changes in the redox state of photosystem II electron acceptor and fluorescence emission from photosystems I and II. Biochimica et Biophysica Acta 635, 542551.CrossRefGoogle Scholar
Downton, W. J. S. (1983). Osmotic adjustment during water stress protects the photosynthetic apparatus against photoinhibition. Plant Science Letters 30, 137143.CrossRefGoogle Scholar
Govindjee Downton, W. J. S., Fork, D. C. & Armond, P. A. (1981). Chlorophyll a fluorescence transient as an indicator of water potential of leaves. Plant Science Letters 20, 191194.CrossRefGoogle Scholar
Grignac, P. (1985). La tolerance au deficit hydrique chez le blé dur et le blé tendre d'hiver. In Journées Céréales INRA, decembre 1983. Institut National de la Recherche Agronomique (in the Press).Google Scholar
Havaux, M. & Lannoye, R. (1982). Changements biochimiques observés pendant l'adaptation au froid de l'orge. Agronomie 2, 923930.CrossRefGoogle Scholar
Havaux, M. & Lannoye, R. (1983 a). Temperature dependence of delayed chlorophyll fluorescence in intact leaves of higher plants. A rapid method for detecting the phase transition of thylakoid membrane lipids. Photosynthesis Research 4, 257263.Google ScholarPubMed
Havaux, M. & Lannoye, R. (1983 b). Chlorophyll fluorescence induction: a sensitive indicator of water stress in maize plants. Irrigation Science 4, 147151.CrossRefGoogle Scholar
Havaux, M. & Lannoye, R. (1985). In vivo chlorophyll fluorescence and delayed light emission as rapid screening techniques for stress tolerance in crop plants. Zeitschrift fur Pflanzenziichtung (in the Press).Google Scholar
Hetherington, S. E., Smillie, R. M., Hardacre, A. K. & Eagles, H. A. (1983). Using chlorophyll fluorescence in vivo to measure the chilling tolerances of different populations of maize. Australian Journal of Plant Physiology 10, 247256.Google Scholar
Keck, R. W. & Boyer, J. S. (1974). Chloroplast response to low leaf water potentials. III. Differing inhibition of electron transport and priotophosphorylation. Plant Physiology 53, 474479.CrossRefGoogle Scholar
Krause, G. H., Vernotte, C. & Briantais, J. M. (1982). Photoinduced quenching of chlorophyll fluorescence in intact chloroplasts and algae. Resolution into two components. Biochimica et Biophysica Acta 679, 116124.CrossRefGoogle Scholar
Lavorel, J. & Etienne, A.-L. (1977). In vivo chlorophyll fluorescence. In Topics in Photosynthesis II (ed. Barber, J.), pp. 203268. Amsterdam: Elsevier.Google Scholar
Melcarek, P. K., Cernohlavek, L. G. & Brown, G. N. (1977). A solid-state device for the simultaneous measurement of prompt and delayed chlorophyll fluorescence induction transients in leaves. Analytical Biochemistry 82, 473484.CrossRefGoogle ScholarPubMed
Monneveux, P. (1985). Effets des deficits hydriques et des hautes températures sur l'accumulation de la proline chez le blé tendre (Triticum aestivum L.) et chez le blé dur (Triticum durum Desf.). In Journées Céréales INRA, decembre 1983. Institut National de la Recherche Agronomique (in the Press).Google Scholar
Norrish, R., Kriedemann, P. E. & Wlskich, J. T. (1983). Chlorophyll o fluorescence transients: a fast acquisition system to facilitate in vivo measurements. Photosynthesis Research 4, 213227.CrossRefGoogle Scholar
Papageorgiou, G. (1975). Chlorophyll fluorescence: an intrinsic probe of photosynthesis. In Bioenergetics of Photosynthesis (ed. , Govindjee), pp. 319371. New York: Academic Press.CrossRefGoogle Scholar
Schreiber, U., Groberman, L. & Vldaver, W. (1975). Portable, solid-state fluorometer for the measurement of chlorophyll fluorescence induction in plants. Review of Scientific Instrumentation 46, 538542.CrossRefGoogle Scholar
Smillie, R. M. & Gibbons, G. C. (1981). Heat tolerance and heat hardening in crop plants measured by chlorophyll fluorescence. Oarlsberg Research Communications 46, 395403.CrossRefGoogle Scholar
Smillie, R. M. & Hetherington, S. E. (1983). Stress tolerance and stress-induced injury in crop plants measured by chlorophyll fluorescence in vivo. Plant Physiology 72, 10431050.CrossRefGoogle ScholarPubMed
Smillie, R. M. & Nott, R. (1982). Salt tolerance in crop plants monitored by chlorophyll fluorescence in vivo. Plant Physiology 70, 10491054.CrossRefGoogle ScholarPubMed
Sundbom, E., Strand, M. & Hällgren, J. E. (1982). Temperature-induced fluorescence changes. A screening method for frost tolerance of potato (Solanum sp.). Plant Physiology 70, 12991302.CrossRefGoogle ScholarPubMed