Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T14:15:45.768Z Has data issue: false hasContentIssue false

Digestibility of rumen bacterial cell proteins in buffaloes and goats

Published online by Cambridge University Press:  27 March 2009

D. N. Verma
Affiliation:
Division of Animal Nutrition, Indian Veterinary Research Institute, Izatnagar (U.P.) Piw-243122, India
U. B. Singh
Affiliation:
Division of Animal Nutrition, Indian Veterinary Research Institute, Izatnagar (U.P.) Piw-243122, India

Summary

The digestibility of protein of mixed whole rumen bacterial cells and Streptococcus bovis were determined in Bos bubalis and goats. The bacterial cells were labelled either with 35S or 14C in vitro incubation and were injected in a single dose into the rumen after protecting by formaldehyde treatment. Faeces were collected for 6 consecutive days and radioactivity excreted in the faeces was measured. The digestibility of bacterial protein ranged from 81·7 to 96·8% in both the species.

Type
Short Note
Copyright
Copyright © Cambridge University Press 1977

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergen, W. G., Purser, D. B. & Cline, J. H. (1967). Enzymatio determination of protein quality of individual rumen bacteria. Journal of Nutrition 92, 357–64.CrossRefGoogle ScholarPubMed
Bird, P. R. (1972). Sulphur metabolism and excretion studies in ruminants. VI. The digestibility and utilization by sheep of 35S from 35S.labelled ruminal micro-organisms. Australian Journal of Biological Sciences 25, 195203.CrossRefGoogle Scholar
Faichney, C. J. (1969). Production of volatile fatty acids in sheep caecum. Australian Journal of Agricultural Research 28, 491508.CrossRefGoogle Scholar
Ferguson, K. A. (1974). The protection of dietary proteins and amino acid against microbial fermentation in the rumen. Proceedings of IV International Symposium on Ruminant Physiology, Sydney, August 1974.Google Scholar
Hoogenraad, N. J., Hird, E. J. R., White, R. G. & Leng, R. A. (1970). Utilization of 14C-labelled Bacillua subtilis and Escherichia coli by sheep. British Journal of Nutrition 24, 129–44.CrossRefGoogle ScholarPubMed
Johnson, B. C., Hamilton, T. S., Robinson, W. B. & Garey, T. C. (1944). The mechanism of non-protein nitrogen utilization in ruminants. Journal of Animal Science 3, 287–98.CrossRefGoogle Scholar
MoNaught, M. L., Smith, J. A. B., Henry, K. M. & Kon, S. K. (1950). The utilization of non-protein nitrogen in the bovine rumen. 5. The isolation and nutritive value of a preparation of dried rumen bacteria. Biochemical Journal 46, 3242.CrossRefGoogle Scholar
Reed, F. M., Moir, R. J. & Underwood, E. J. (1949). Ruminal flora studies in the sheep. I. The nutritive value of rumen bacterial protein. Australian Journal of Scientific Research B2, 304–17.Google Scholar
Salton, M. R. J. & Pavlik, J. G. (1960). The bacterial cell wall. VI. Wall composition and sensitivity to lysozymes. Biochemica et Biophysica Acta 39, 398403.CrossRefGoogle Scholar
Singh, U. B., Verma, D. N., Varma, A. & Ranjhan, S. K. (1974). Measurement of the rate of production of bacteria in the rumen of buffalo calves. Journal of Agricultural Science, Cambridge 83, 1317.CrossRefGoogle Scholar
Smith, R. H., Salter, D. N., Sutton, J. D. & McAllan, A. B. (1975). Synthesis and digestion of microbial nitrogen compounds and VFA production by the bovine. Tracer studies on non-protein nitrogen for ruminants. Proceedings IAEA Panel, Vienna, 8193.Google Scholar
Verma, D. N., Singh, U. B., Srivastava, S. K. & Srivastava, R. V. N. (1976). Comparison of the production rate of bacteria in rumen of buffalo calves estimated by using labelled Streptococcus bovis and mixed ruminal bacterial cells. Journal of Agricultural Science, Cambridge 87, 661–4.CrossRefGoogle Scholar