Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T18:54:31.177Z Has data issue: false hasContentIssue false

Developing a diet authentication system from the composition of milk and meat in sheep: a review

PAPER PRESENTED AT THE 9TH ANNUAL LANGFORD FOOD INDUSTRY CONFERENCE, BRISTOL, 24–25 MAY 2006

Published online by Cambridge University Press:  24 April 2007

S. PRACHE*
Affiliation:
Institut National de la Recherche Agronomique (INRA), UR1213 Herbivores, Site de Theix, F-63122 Saint-Genès-Champanelle, France
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

There is currently an increased consumer demand for information on herbivore production factors, particularly the animal diet. To meet these demands, farmers and commercial entities develop specifications via quality labels. There is therefore a need for analytical tools to be able to guarantee that the specification commitments have been fully met and to help with constructing them. The present paper reviews the current state of knowledge concerning diet authentication in sheep meat and milk, the different approaches that have been investigated, some leading examples concerning the discrimination of contrasting feeding situations in sheep, together with the persistence of some diet markers in the event of changes in animals' diet. The nature of the diet strongly influences the composition of the animal tissues and products, which is due to specific compounds that are directly transferred from the feed to the end product or that are transformed or produced by rumen micro-organisms or the animal's metabolism under the effect of specific diets. Some of these compounds can therefore be used as diet markers. Compounds such as carotenoids, phenolic compounds, fatty acids, volatile compounds and ratios of oxygen, carbon and nitrogen stable isotope are potential tracers in meat and milk or animal tissues of animal feeding diets. Moreover, differences in meat and milk composition induce differences in their optical properties, and therefore in their spectral features, which can also be used for diet authentication. These techniques have already allowed discrimination among products obtained in contrasting feeding conditions. Intermediate situations, for example in case of modification of the animal's diet, may be less easily recognized and may require a combination of tracing methods. In particular, the persistence of tracers when animals are stall-fed a concentrate-based diet after pasture and its implications for traceability are discussed. Finally, further directions for research are highlighted.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aurousseau, B., Bauchart, D., Calichon, E., Micol, D. & Priolo, A. (2004). Effect of grass or concentrate feeding systems and rate of growth on triglyceride and phospholipid and their fatty acids in the M. longissimus thoracis of lambs. Meat Science 66, 531541.CrossRefGoogle ScholarPubMed
Besle, J. M., Lamaison, J. L., Dujol, B., Pradel, P., Fraisse, D., Viala, D. & Martin, B. (2005). Flavonoids and other phenolics in milk as a putative tool for traceability of dairy production systems. In Indicators of Milk and Beef Quality, Proceedings of the European Association of Animal Production Publication (Eds Hocquette, J. F. & Gigli, S.), pp. 345350. EAAP Scientific Series No. 12. Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
Cassar-Malek, I., Bernard, C., Jurie, C., Barnola, I., Gentès, G., Dozias, D., Micol, D. & Hocquette, J. F. (2005). Pasture-based beef production systems may influence muscle characteristics and gene expression. In Indicators of Milk and Beef Quality, Proceedings of the European Association of Animal Production Publication (Eds Hocquette, J. F. & Gigli, S.), pp. 385390. EAAP Scientific Series No. 12. Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
Cooper, S. L., Sinclair, L. A., Wilkinson, R. G., Hallett, K. G., Enser, M. & Wood, J. D. (2004). Manipulation of the n−3 polyunsaturated fatty acid content of muscle and adipose tissue in lambs. Journal of Animal Science 82, 14611470.CrossRefGoogle ScholarPubMed
Cornu, A., Kondjoyan, N., Begnaud, F., Micol, D., Renou, J. P. & Berdagué, J. L. (2001). Les terpènes des viandes, traceurs de l'alimentation et de l'origine géographique des animaux. Rencontres Recherches Ruminants 8, 61.Google Scholar
Cozzolino, D., De Mattos, D. & Vaz Martins, D. (2002). Visible/near infrared reflectance spectroscopy for predicting composition and tracing system of production of beef muscle. Animal Science 74, 477484.CrossRefGoogle Scholar
Dumont, J. P. & Adda, J. (1978). Occurrence of sesquiterpenes in mountain cheese volatiles. Journal of Agricultural and Food Chemistry 26, 364367.CrossRefGoogle Scholar
Enser, M., Hallett, K. G., Hewett, B., Fursey, G. A. J., Wood, J. D. & Harrington, G. (1998). Fatty acid content and composition of UK beef and lamb muscle in relation to production system and implications for human nutrition. Meat Science 49, 329341.CrossRefGoogle ScholarPubMed
Fisher, A. V., Enser, M., Richardson, R. I., Wood, J. D., Nute, G. R., Kurt, E., Sinclair, L. A. & Wilkinson, R. G. (2000). Fatty acid composition and eating quality of lambs types derived from four diverse production systems. Meat Science 55, 141147.CrossRefGoogle Scholar
Gebbing, T., Schellberg, J. & Kühbauch, W. (2004). Switching from grass to maize changes the C isotope signature of meat and fat during fattening of steers. In Land Use Systems in Grassland Dominated Regions, Proceedings of the 20th General Meeting of the European Grassland Federation (Eds Lüscher, A., Jeangros, B., Kessler, W., Huguenin, O., Lobsiger, M., Millar, M. & Suter, D.), pp. 11301132. Zürich, Switzerland: Hochschulverlag AG.Google Scholar
Keen, A. R. & Wilson, R. D. (1992). Pasture feeding – a contribution of additional flavour nuances of milk fat and meat flavour. In Milk Fat Flavour Forum, Summary Proceedings of the New Zealand Dairy Research Institute, pp. 2431. Palmerston North, New Zealand.Google Scholar
Larick, D. K., Hedrick, H. B., Bailey, M. E., Williams, J. E., Hancock, D. L., Garner, G. B. & Morrow, R. E. (1987). Flavor constituents of beef as influenced by forage- and grain-feeding. Journal of Food Science 52, 245251.CrossRefGoogle Scholar
Mariaca, R. G., Berger, T. F. H., Gauch, R., Imhof, M. I., Jeangros, B. & Bosset, J. O. (1997). Occurrence of volatile mono- and sesquiterpenoids in highland and lowland plant species as possible precursors for flavor compounds in milk and dairy products. Journal of Agricultural and Food Chemistry 45, 44234434.CrossRefGoogle Scholar
Martin, B., Cornu, A., Kondjoyan, N., Ferlay, A., Verdier-Metz, I., Pradel, P., Rock, E., Chilliard, Y., Coulon, J. B. & Berdagué, J. L. (2005). Milk indicators for recognizing the types of forages eaten by dairy cows. In Indicators of Milk and Beef Quality, Proceedings of the European Association of Animal Production Publication (Eds Hocquette, J. F. & Gigli, S.), pp. 127136. EAAP Scientific Series No. 12. Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
Nozière, P., Graulet, B., Lucas, A., Martin, B., Grolier, P. & Doreau, M. (2006). Carotenoids in ruminants: from forages to dairy products. Animal Feed Science and Technology 131, 418450.CrossRefGoogle Scholar
Piasentier, E., Valusso, R., Camin, F. & Versini, G. (2003). Stable isotope ratio analysis for authentication of lamb meat. Meat Science 64, 239247.CrossRefGoogle ScholarPubMed
Prache, S. & Priolo, A. (2003). Procédé de traçabilité d'une alimentation avec de l'herbe fraîche chez un animal. Accord de délivrance du 24 octobre 2003 du Brevet d'invention priorité N° 01 0560, déposé en France au nom de l'INRA le 12 avril 2001 à l'Institut de la Propriété Industrielle, Paris.Google Scholar
Prache, S. & Theriez, M. (1999). Traceability of lamb production systems: carotenoids in plasma and adipose tissue. Animal Science 69, 2936.CrossRefGoogle Scholar
Prache, S., Priolo, A., Tournadre, H., Jailler, R., Dubroeucq, H., Micol, D. & Martin, B. (2002). Traceability of grass-feeding by quantifying the signature of carotenoid pigments in herbivores' meat, milk and cheese. In Multi-functions Grasslands, Quality Forages, Animal Products and Landscapes, Proceedings of the 19th General Meeting of the European Grassland Federation (Eds Durand, J. L., Emile, J. C., Huyghe, C. & Lemaire, G.), pp. 592593. La Rochelle, France.Google Scholar
Prache, S., Priolo, A. & Grolier, P. (2003 a). Persistence of carotenoid pigments in the blood of concentrate-finished grazing sheep: its significance for the traceability of grass feeding. Journal of Animal Science 81, 360367.CrossRefGoogle ScholarPubMed
Prache, S., Priolo, A. & Grolier, P. (2003 b). Effect of concentrate finishing on the carotenoid content of perirenal fat in grazing sheep: its significance for discriminating grass-fed, concentrate-fed and concentrate-finished grazing lambs. Animal Science 77, 225233.CrossRefGoogle Scholar
Prache, S., Cornu, A., Berdagué, J. L. & Priolo, A. (2005). Traceability of animal feeding diet in the meat and milk of small ruminants. Small Ruminant Research 59, 157168.CrossRefGoogle Scholar
Prache, S., Martin, B., Nozière, P., Engel, E., Besle, J. M., Ferlay, A., Micol, D., Cornu, A., Cassar-Malek, I. & Andueza, D. (2006). Traçabilité de l'alimentation des herbivores à partir de la composition de leurs tissus et produits. Rencontres Recherches Ruminants 13, 175182.Google Scholar
Priolo, A., Micol, D., Agabriel, J., Prache, S. & Dransfield, E. (2002 a). Effect of grass or concentrate feeding systems on lamb carcass and meat quality. Meat Science 62, 179185.CrossRefGoogle ScholarPubMed
Priolo, A., Prache, S., Micol, D. & Agabriel, J. (2002 b). Reflectance spectrum of adipose tissue to trace grass feeding in sheep: influence of measurement site and shrinkage time after slaughter. Journal of Animal Science 80, 886891.CrossRefGoogle ScholarPubMed
Priolo, A., Lanza, M., Barbagallo, D., Finocchiaro, L. & Biondi, L. (2003). Can the reflectance spectrum be used to trace grass feeding in ewe milk? Small Ruminant Research 48, 103107.CrossRefGoogle Scholar
Priolo, A., Bella, M., Biondi, L., Fasone, V., Galofaro, V., Scerra, M., Valvo, M. A. & Lanza, M. (2004 a). Suckling lamb fatty acids as affected by ewes feeding system. In Proceedings of the 50th International Congress of Meat Science and Technology, pp. 11521154. Helsinki, Finland.Google Scholar
Priolo, A., Cornu, A., Prache, S., Krogmann, M., Kondjoyan, N., Micol, D. & Berdagué, J. L. (2004 b). Fat volatile tracers of grass-feeding in sheep. Meat Science 66, 475481.CrossRefGoogle ScholarPubMed
Renou, J. P., Deponge, C., Gachon, P., Bonnefoy, J. C., Coulon, J. B., Garel, J. P., Verite, R. & Ritz, P. (2004 a). Characterization of animal products according to geographic origin and feeding diet using nuclear magnetic resonance and isotope ratio mass spectrometry: cow milk. Food Chemistry 85, 6366.CrossRefGoogle Scholar
Renou, J. P., Bielicki, G., Deponge, C., Gachon, P., Micol, D. & Ritz, P. (2004 b). Characterization of animal products according to geographic origin and feeding diet using nuclear magnetic resonance and isotope ratio mass spectrometry. Part II: Beef meat. Food Chemistry 86, 251256.CrossRefGoogle Scholar
Roche, B., Dedieu, B. & Ingrand, S. (2000). Analyse comparative des cahiers des charges Label Rouge gros bovins de boucherie. Rencontres Recherches Ruminants 7, 259262.Google Scholar
Rousset-Akrim, S., Young, O. A. & Berdagué, J. L. (1997). Diet and growth effects in panel assessment of sheepmeat odour and flavour. Meat Science 45, 169181.CrossRefGoogle ScholarPubMed
Roy, N. C., Fraser, K., Lane, G. A., Reynolds, G. W., Deighton, M. H. & Peters, J. S. (2004). The effects of condensed tannins on the net flux of skatole and indole across the mammary gland and their secretion in milk of lactating ewe fed fresh sulla (Hedysarum coronarium). Animal Production in Australia 24, 189192.Google Scholar
Scollan, N. D., Choi, N. J., Kurt, E., Fisher, A. V., Enser, M. & Wood, J. D. (2001). Manipulating the fatty acid composition of muscle and adipose tissue in beef cattle. British Journal of Nutrition 85, 115124.CrossRefGoogle ScholarPubMed
Sebastian, I., Viallon-Fernandez, C., Berge, P. & Berdagué, J. L. (2003). Analysis of the volatile fraction of lamb fat tissue: influence of the type of feeding. Sciences des Aliments 23, 497511.CrossRefGoogle Scholar
Serrano, E., Prache, S., Chauveau-Duriot, B., Agabriel, J. & Micol, D. (2006). Traceability of grass-feeding in young beef using carotenoid pigments in plasma and adipose tissue. Animal Science 82, 909918.CrossRefGoogle Scholar
Suzuki, J. & Bailey, M. E. (1985). Direct sampling capillary GLC analysis of flavor volatiles from ovine fat. Journal of Agricultural and Food Chemistry 33, 343347.CrossRefGoogle Scholar
Tornambe, G., Cornu, A., Pradel, P., Kondjoyan, N., Carnat, A. P., Petit, M. & Martin, B. (2006). Changes in terpene content in milk from pasture-fed cows. Journal of Dairy Science 89, 23092319.CrossRefGoogle ScholarPubMed
Vasta, V. & Priolo, A. (2006). Ruminant fat volatiles as affected by diet. A review. Meat Science 73, 218228.CrossRefGoogle ScholarPubMed
Wood, J. D. & Enser, M. (1997). Factors influencing fatty acids in meat and the role of antioxidants in improving meat quality. British Journal of Nutrition 78, S49S60.CrossRefGoogle ScholarPubMed
Wood, J. D., Richardson, R. I., Nute, G. R., Fisher, A. V., Campo, M. M., Kasapidou, E., Sheard, P. R. & Enser, M. (2003). Effects of fatty acids on meat quality: a review. Meat Science 66, 2132.CrossRefGoogle Scholar
Young, O. A., Berdagué, J. L., Viallon, C., Rousset-Akrim, S. & Theriez, M. (1997). Fat-borne volatiles and sheepmeat odour. Meat Science 45, 183200.CrossRefGoogle ScholarPubMed
Young, O. A., Lane, G. A., Priolo, A. & Fraser, K. (2003). Pastoral and species flavour in lambs raised on pasture, lucerne or maize. Journal of the Science of Food and Agriculture 83, 93104.CrossRefGoogle Scholar