Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T03:17:12.124Z Has data issue: false hasContentIssue false

Cultivar effects on relationship between grain number and photothermal quotient or spike dry weight in wheat

Published online by Cambridge University Press:  14 September 2011

L. LÁZARO*
Affiliation:
Facultad de Agronomía, Universidad Nacional del Centro de la provincia de Buenos Aires, CC 178 (7300), Azul, Buenos Aires, Argentina
P. E. ABBATE
Affiliation:
Unidad Integrada Balcarce, Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata and Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria (INTA), CC 276 (7620), Balcarce, Buenos Aires, Argentina
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

In wheat, the photothermal quotient (Q, the ratio between mean incident solar radiation and mean temperature is greater than 4·5°C in the 30 days preceding anthesis), is a good estimator of grain number/m2 (GN) and of yield. Previous investigations have not analysed in depth whether the responses of GN to Q differ between wheat cultivars, or what is the cause of the eventual variation. In the present work, the results of field experiments carried out between 1994 and 2001 in various locations were used to test the following hypotheses: (i) the responses of GN to Q differ between wheat cultivars; (ii) these differences are caused by differences in the spike fertility index (GN/g spike dry weight/m2 at the beginning of grain filling (SDW)). The responses of GN to Q were compared for five wheat cultivars (four bread wheats and one durum wheat) and it was found that with Q values above 0·3 MJ/m2/d°C, all responses of GN to Q were linear, positive and parallel. A method was then proposed to obtain cultivar-specific GN from a common relationship between GN and Q. This method would facilitate GN estimation in crops with changes in sowing dates, sites or years, starting from data of potential GN and yield that is relatively easy to obtain. Differences among cultivars in response to Q were due to differences in GN response at SDW. Similar SDW values produced different GN, depending on the spike fertility index of each cultivar. The cultivars did not differ in their responses of SDW to Q. The association between spike fertility index and SDW was strongly negative in bread wheat. At lower levels of Q or SDW, the spike fertility index increased in all cultivars, at least when changes in SDW or Q were caused mainly by intercepted solar radiation, but the present results demonstrate that differences between cultivars also exist in this relationship.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbate, P. E., Andrade, F. H. & Culot, J. P. (1995). The effects of radiation and nitrogen on number of grains in wheat. Journal of Agricultural Science, Cambridge 124, 351360.CrossRefGoogle Scholar
Abbate, P. E., Andrade, F. H., Culot, J. P. & Bindraban, P. S. (1997). Grain yield in wheat: effects of radiation during spike growth period. Field Crops Research 54, 245257.CrossRefGoogle Scholar
Abbate, P. E., Lázaro, L. & Andrade, F. H. (1998 a). Es posible incrementar el número de granos por unidad de superficie? In Explorando Altos Rendimientos de Trigo (Eds Kohli, M. M. & Martino, D.), pp. 7190. La Estanzuela, Uruguay: CIMMYT-INIA.Google Scholar
Abbate, P. E., Andrade, F. H., Lázaro, L., Bariffi, J. H., Berardocco, H. G., Inza, V. H. & Marturano, F. (1998 b). Grain yield increase in modern Argentinean wheat cultivars. Crop Science 38, 12031209.CrossRefGoogle Scholar
Abbate, P. E., Lázaro, L., Montenegro, A. A., Gutheim, F., Demotes-Mainard, S., de Pablo, M. C. & Bariffi, J. H. (2001). Potencial productivo de cultivares nacionales y extranjeros. In XVIII Jornada de Actualización Profesional en el Cultivo de Trigo (Eds Gutheim, F., Sarlangue, H., Leonardo, C. & Gualati, A.), pp. 1320. Mar del Plata, Buenos Aires, Argentina: EEA-INTA.Google Scholar
Abbate, P. E. & Demotes-Mainard, S. (2001). Rendimiento potencial de cultivares de trigo argentinos y europeos en Balcarce y Grignon. In 5th Congreso Nacional de Trigo (Eds Nisi, J. E. & Rubiolo, O. J.), pp. 77–76. Villa Carlos Paz, Córdoba, Argentina: INTA.Google Scholar
Bassu, S., Giunta, F. & Motzo, R. (2010). Effects of sowing date and cultivar on spike weight and kernel number in durum wheat. Crop and Pasture Science 61, 287295.CrossRefGoogle Scholar
Cantarero, M., Dardanelli, J. & Badiali, O. (1998). Factores ambientales que determinan el rendimiento potencial en trigo. In Riego y Agricultura de Precisión (Ed. INTA Manfredi), pp. 1626. Córdoba, Argentina: EEA INTA Manfredi.Google Scholar
Dreccer, M. F., van Herwaarden, A. F. & Chapman, S. C. (2009). Grain number and grain weight in wheat lines contrasting for stem water soluble carbohydrate concentration. Field Crops Research 112, 4354.CrossRefGoogle Scholar
Demotes-Mainard, S. & Jeuffroy, M. H. (2001). Incorporating radiation and nitrogen nutrition into a model of kernel number in wheat. Crop Science 41, 415423.CrossRefGoogle Scholar
Fischer, R. A. (1984). Wheat. In Proceedings Symposium on Potential Productivity of Field Crops under Different Environments (Eds Smith, W. H. & Banks, S. J.), pp. 129154. Los Baños, Philippines: IRRI.Google Scholar
Fischer, R. A. (1985 a). Physiological limitations to producing wheat in semitropical and tropical environments and possible selection criteria. In Wheats for More Tropical Environments. Proceedings of the International Symposium (Eds Villareal, R. L. & Klatt, A. R.), pp. 209230. Mexico, D. F. Mexico: CIMMYT.Google Scholar
Fischer, R. A. (1985 b). Number of kernels in wheat crops and the influence of solar radiation and temperature. Journal of Agricultural Science, Cambridge 105, 447461.CrossRefGoogle Scholar
Fischer, R. A. (1993). Irrigated spring wheat and timing and amount of nitrogen fertilizer. II Physiology of grain yield response. Field Crops Research 33, 5780.CrossRefGoogle Scholar
Fischer, R. A. (2007). Understanding the physiological basis of yield potential in wheat. Journal of Agricultural Science, Cambridge 145, 99113.CrossRefGoogle Scholar
Fischer, R. A. (2008). The importance of grain or kernel number in wheat: a reply to Sinclair and Jamieson. Field Crops Research 105, 1521.CrossRefGoogle Scholar
Lázaro, L., Abbate, P., Cogliatti, D. & Andrade, F. H. (2010). Relationship between yield, growth and spike weight in wheat under phosphorus deficiency and shading. The Journal of Agricultural Science, Cambridge 148, 8393.CrossRefGoogle Scholar
Lázaro, L., Abbate, P. E., Cogliatti, D. H. & Cardozo, J. (2004). Respuesta a la deficiencia de fósforo de distintos cultivares de trigo. In VI Congreso Nacional de Trigo, 20–22 October 2004, Bahia Blanca, Argentina (Eds Mockel, E., Miranda, R., Salomón, N. & Cantamuto, M.), pp. 149150. Buenos Aires, Argentina: INTA.Google Scholar
Magrín, G. O., Hall, A. J., Baldy, C. & Grondona, M. O. (1993). Spatial and interannual variations in the photothermal quotient: implications for the potential kernel number of wheat crops in Argentina. Agricultural and Forestry Meteorology 67, 2941.CrossRefGoogle Scholar
Midmore, D. J., Cartwright, P. M. & Fischer, R. A. (1984). Wheat in tropical environments. II. Crop growth and grain yield. Field Crops Research 8, 207227.CrossRefGoogle Scholar
Miralles, D. J., Spinedi, M. V., Abeledo, L. G. & Abelleyra, D. (2007). Variability on photoperiod responses in Argentinean wheat cultivars differing in length of crop cycle. In Wheat Production in Stressed Environments. Proceedings of the 7th International Wheat Conference, Mar del Plata, Argentina, 27 November 2005 (Eds Buck, H. T., Nisi, J. E. & Salomón, N.), pp. 599609. Dordrecht, The Netherlands: Springer.Google Scholar
Nalley, L. L., Barkley, A. P. & Sayre, K. (2009). Photothermal quotient specifications to improve wheat cultivar yield component models. Agronomy Journal 101, 556563.CrossRefGoogle Scholar
Ortiz-Monasterio, J. I., Dhillon, S. S. & Fischer, R. A. (1994). Date of sowing effects on grain yield and yield components of irrigated spring wheat cultivars and relationships with radiation and temperature in Ludhiana, India. Field Crops Research 37, 169184.CrossRefGoogle Scholar
Ostle, B. (1974). El problema de varias muestras o grupos. In Estadística Aplicada, 4th edn (Ed. de la Serna Valdivia, D.), pp. 228233. Mexico: Limusa.Google Scholar
Ritchie, J. T. & Nesmith, D. S. (1991). Temperature and crop development. In Modeling Plant and Soil Systems (Eds Hanks, J. & Ritchie, J. T.), pp. 529. Monograph Series No. 31. Madison, Wisconsin, USA: ASA, CSSA, SSSA.Google Scholar
Savin, R. & Slafer, G. A. (1991). Shading effects on the yield of an Argentinean wheat cultivar. Journal of Agricultural Science, Cambridge 116, 17.CrossRefGoogle Scholar
Sayre, K. D., Rajaram, S. & Fischer, R. A. (1997). Yield potential progress in short bread wheats in northwest Mexico. Crop Science 37, 3642.CrossRefGoogle Scholar
Shearman, V. J., Sylvester-Bradley, R., Scott, R. K. & Foulkes, M. J. (2005). Physiological processes associated with wheat yield and progress in the UK. Crop Science 45, 175185.CrossRefGoogle Scholar
Sinclair, T. R. & Jamieson, P. D. (2006). Grain number, wheat yield, and bottling beer: an analysis. Field Crops Research 98, 6067.CrossRefGoogle Scholar
Sinclair, T. R. & Jamieson, P. D. (2008). Yield and grain number: A correlation or causal relationship? Authors response to “The importance of grain or kernel number in wheat: A reply to Sinclair and Jamieson” by R.A. Field Crops Research 105 (1–2): 2226.CrossRefGoogle Scholar
Stapper, M. & Fischer, R. A. (1990). Genotype, sowing date and plant spacing influence on high-yielding irrigated wheat in Southern New South Wales. III. Potential yield and optimum flowering dates. Australian Journal of Agricultural Research 41, 10431056.CrossRefGoogle Scholar
Steel, R. G. D. & Torrie, J. H. (1989). Homogeneidad de coeficientes de regresión. In Bioestadística: Principios y procedimientos (Principles and Procedures of Statistics), 2nd edn (Eds Steel, R. G. D. & Torrie, J. H.), pp. 412413. México: McGraw-Hill.Google Scholar
Summerfield, R. J., Roberts, E. H., Ellis, R. H. & Lawn, R. J. (1991). Towards the reliable prediction of time to flowering in six annual crops: I. The development of simple models for fluctuating field environments. Experimental Agriculture 27, 1131.CrossRefGoogle Scholar
Thorne, G. N. & Wood, D. W. (1987). Effects of radiation and temperature on tiller survival, grain number and grain yield filling in wheat. Annals of Botany 59, 413426.CrossRefGoogle Scholar
Wall, P. C. (1979). An analysis of factors limiting grain number and yield of spring wheat in low latitude environments. PhD Thesis, University of Reading.Google Scholar
Wall, P. (1998). Rendimiento y el cociente fototérmico. Una relación inevitable? In Explorando Altos Rendimientos de Trigo (Eds Kohli, M. M. & Martino, D.), pp. 4758. La Estanzuela, Uruguay: CIMMYT-INIA.Google Scholar
Whitechurch, E. M. (2005). Duración del crecimiento de la espiga en trigo: variabilidad intra específica y relación con la sensibilidad al fotoperíodo, vernalización y precocidad intrínseca. PhD thesis, University of Buenos Aires.Google Scholar