Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T10:43:12.613Z Has data issue: false hasContentIssue false

Compensation in spring-sown oil-seed rape (Brassica napus L.) plants in response to injury to their flower buds and pods

Published online by Cambridge University Press:  27 March 2009

G. M. Tatchell
Affiliation:
Imperial College Field Station, Silwood Park, Ascot, Berkshire

Summary

The extent and possible mechanism by which spring-sown oil-seed rape plants can compensate for insect or artificial injury to flower buds and pods were investigated by examination of the yield, and its components, of plants collected from commercial fields and those grown in field cages and glasshouses. Plants were able to compensate and in some instances overcompensate for all observed levels of M. aeneus injury or artificial bud removal by the production of more axillary racemes, which may be due to the loss of apical dominance. Artificial injury to the pods or infestation by C. assimilis larvae did not result in a significant reduction in the yield of seed and was compensated for partly by a slight increase in the number of axillary racemes and by slight increases in the number of pods on each axillary raceme and in the 1000-seed weight, and resulted mainly from the diversion of nutrients to other yield-bearing organs. Injury by D. brassicae larvae was partly compensated for in 1975 and at lower injury levels in 1974 and involved a similar mechanism to compensation for C. assimilis injury. These results are discussed in relation to the observed infestation levels in field surveys and current control practices.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, M. W. (1967). Basis of yield component compensation in crop plants with special reference to the field bean, Phaseolus vulgaris. Crop Science 7, 505510.Google Scholar
Alford, D. V. & Gould, H. J. (1975). Survey of pest incidence on oil-seed rape in the U.K. Proceedings 8th British Insecticide and Fungicide Conference (1975), pp. 489495.Google Scholar
Allen, E. J. & Morgan, D. G. (1972). A quantitative analysis of the effect of nitrogen on the growth, development and yield of oilseed rape. Journal of Agricultural Science, Cambridge 78, 315324.Google Scholar
Allen, E. J. & Morgan, D. G. (1975). A quantitative comparison of the growth, development and yield of different varieties of oilseed rape. Journal of Agricultural Science., Cambridge 85, 159174.CrossRefGoogle Scholar
Allen, E. J., Morgan, D. G. & Ridgman, W. J. (1971). A physiological analysis of the growth of oilseed rape. Journal of Agricultural Science, Cambridge 77, 339341.Google Scholar
Anon. (1982). CSO Annual Abstract of Statistics 1982 Edition No. 118. London: H.M.S.O.Google Scholar
Bardner, R. & Fletcher, K. E. (1974). Insect infestations and their effects on growth and yield of field crops: a review. Bulletin of Entomological Research 64, 141160.Google Scholar
Dmoch, J. (1965). The dynamics of a population of the cabbage seedpod weevil (Ceuthorrhynchus assimilis Payk.) and the development of winter rape. Part 1. Ekologia Polska Seria A 13, 249287.Google Scholar
Free, J. B. & Williams, I. H. (1978). A survey of the damage caused to crops of oil-seed rape (Brassica napus L.) by insect pests in south-central England and their effect on seed yield. Journal of Agricultural Science, Cambridge 90, 417424.CrossRefGoogle Scholar
Gould, H. J. (1975). Surveys of pest incidence on oilseed rape in south central England. Annals of Applied Biology 79, 1926.Google Scholar
Härle, A. (1942). Untersuehungen zur Frage des physiologischen Knozpenabfalls bei Raps und Rübsen. Angewandte Botaniche 24, 334352.Google Scholar
Harper, F. R. & Berkenkamp, B. (1975). Revised growth stage key for Brassica campestris and B. napus. Canadian Journal of Plant Science 55, 657658.CrossRefGoogle Scholar
Jary, S. G. & Carpenter, K. (1948). Insect pests of Brassica seed crops in Romney Marsh, Kent. Annals of Applied Biology 35, 134136.Google Scholar
Kaufmann, Von O. (1942). Über Reaktionen der schossenden Rapspflanze auf Rapsglanzkäferfrass und andere Schäden. Zeitschrift für Pflanzenkrankheiten 52, 486509.Google Scholar
Mendham, N. J. & Scott, R. K. (1975). The limiting effect of plant size at inflorescence initiation on subsequent growth and yield of oilseed rape (Brassica napus). Journal of Agricultural Science, Cambridge 84, 487502.Google Scholar
Mendham, N. J., Shipway, P. A. & Scott, R. K. (1981). The effects of delayed sowing and weather on growth, development and yield of winter oil-seed rape (Brassica napus). Journal of Agricultural Science, Cambridge 96, 389416.Google Scholar
Nijveldt, W. (1973). Een analyse van de toegenomen aantasting van koolzaad door de koolzaadgalmug, Dasyneura brassicae (Winn.) Gewasbescherming 4, 14.Google Scholar
Sachs, T. & Thimann, K. V. (1967). The role of auxins and cytokinins in the release of apical dominance. American Journal of Botany 54, 136144.CrossRefGoogle Scholar
Scott, R. K., Ogunremi, E. A., Ivins, J. D. & Mendham, N. J. (1973). The effect of fertilizers and harvest date on growth and yield of oilseed rape sown in autumn and spring. Journal of Agricultural Science, Cambridge 81, 287293.Google Scholar
Sylvén, E. (1949). Skidgallmyggan, Dasyneura brassicae (Winn.) Statens Växtskyddsanstalt. Meddelande No. 54, 1120.Google Scholar
Sylvén, E. (1950). Om rapsens reaktion för skidförtust under senare delen av och strax efter skidsättningen. Ett bidrag till kannedomen om skidgallmyggaus. (Dasyneura brassicae Winn.) betydelse som skadedjur. Statens Växtskyddsanstalt. Meddelande No. 56, 131.Google Scholar
Sylvén, E. & Svenson, G. (1975). Relationship between density of Ceuthorrhynchus assimilis Payk. (Col.) and damage by Dasineura brassicae Winn. (Cec.) in a cage experiment in summer turnip rape. Slatens Växtskyddsanstalt. Meddelande 16 (161), 5360.Google Scholar
Sylvén, E. & Svenson, G. (1976). Effect on yield of damage caused by Meligethes aeneus F. (Col.) to winter rape as indicated by cage experiments. Annals Agriculturae Fenniae 15, 2433.Google Scholar
Tatchell, G. M. (1977). Oilseed rape (Brassica napus L.): pest-crop relationships. Ph.D. thesis, University of London, 314 pp.Google Scholar
Thomas, T. H. (1972). The distribution of hormones in relation to apical dominance in Brussels sprouts (Brassica oleracea var. gemmifera L.) plants. Journal of Experimental Botany 23, 294301.Google Scholar
Tulisalo, U., Korpela, S. & Pohto, A. (1976). The yield loss caused by the seed pod weevil Ceuthorrhyncus assimilis Payk. (Col., Curculionidae) on summer turnip rape in cage experiments. Annals Entomologici Fennici 42, 98102.Google Scholar
Williams, I. H. (1978). The pollination requirements of swede rape (Brassica napus L.) and of turnip rape (Brassica campestris L.). Journal of Agricultural Science, Cambridge 91, 343348.CrossRefGoogle Scholar
Williams, I. H. & Free, J. B. (1978). The feeding and mating behaviour of pollen beetles (Meligethes aeneus Fab.) and seed weevils (Ceutorhynchus assimilis Payk.) on oil-seed rape (Brassica napus L.). Journal of Agricultural Science, Cambridge 91, 453459.Google Scholar
Williams, I. H. & Free, J. B. (1979). Compensation of oil-seed rape (Brassica napus L.) plants after damage to their buds and pods. Journal of Agricultural Science, Cambridge 92, 5359.Google Scholar
Winfield, A. L. (1962). Effect of early flower-bud removal on subsequent development of some Brassica seed plants. Plant Pathology 11, 1722.Google Scholar
Winfield, A. L. & Gouqh, H. C. (1959). Pests of mustard seed crops. Agriculture 65, 554558.Google Scholar