Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T18:06:56.307Z Has data issue: false hasContentIssue false

A comparison of glutaraldehyde and formaldehyde fixation of isolated pea chloroplasts and its implications for the treatment of herbage for nutritional studies

Published online by Cambridge University Press:  27 March 2009

Janet West
Affiliation:
Biochemistry Department, A.R.G. Institute of Animal Physiology, Babraham, Cambridge CB2 4AT
J. L. Mangan
Affiliation:
Biochemistry Department, A.R.G. Institute of Animal Physiology, Babraham, Cambridge CB2 4AT

Summary

Photosynthetic electron transport, osmotic volume changes and protein loss on osmotic shock were measured in isolated pea chloroplasts after treatment with a range of aldehyde concentrations at various temperatures and times. ADP+Pi-stimulated oxygen production was the most sensitive to inhibition by the aldehyde treatment. With suitable conditions, osmotic volume changes could be prevented and protein losses on osmotic shock reduced to about 1% of the control value, whilst NH3-uncoupled electron transport retained about 40% of its activity. Results showed that basal, ADP + Pi-stimulated and NH3-stimulated O2 production could be used together to indicate the extent of chloroplast fixation thus providing a way of assessing fixation in preparations where osmotic changes are difficult to measure.

Glutaraldehyde (M.W. 100) was found to be 60–80 times as effective as formaldehyde (M.W. 30), on a molar basis, in preventing osmotic volume changes and protein loss on osmotic shock.

The application of this work for the production of large amounts of glutaraldehyde fixed chloroplasts and of fixed herbage for use as a tool in nutritional studies in ruminant animals is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Pl. Physiol., Lancaster 24, 115.CrossRefGoogle Scholar
Blum, F. (1893). Dor Formaldehyd als Härtungsmittel. Z. wiss. Mikrosk. 10, 314–5.Google Scholar
Bowes, J. H. (1948). The reaction of formaldehyde and amino acids with special reference to formaldehyde tanning. In Progress in Leather Science, London, p. 501–18. British Leather Manufacturers Research Association.Google Scholar
Bowes, J. H. & Cater, C. W. (1966). The reaction of glutaraldehyde with proteins and other biological materials. Jl R. microsc. Soc. 85, 193200.CrossRefGoogle Scholar
Cater, C. W. (1963). The evaluation of aldehydes and other bifunctional compounds as cross-linking agents for collagen. J. Soc. Leath. Trades Chem. 47, 259–72.Google Scholar
Fein, M. L., Harris, E. H., Naghski, J. & Filachione, E. M. (1959). Tanning with Glutaraldehyde. I. Rate Studies. J. Am. Leath. Chem. Ass. 54, 488502.Google Scholar
Ferguson, K. A., Hemsley, J. A. & Reis, P. J. (1967). Nutrition and wool growth. The effect of protecting dietary protein from microbial degradation in the rumen. Aust. J. Sci. 30, 215–17.Google Scholar
Flitney, F. W. (1966). The time course of the fixation of albumin by formaldehyde, glutaraldehyde, acrolein and other higher aldehydes. Jl R. microsc. Soc. 85, 353–64.CrossRefGoogle Scholar
French, D. & Edsall, J. T. (1945). The reactions of formaldehyde with amino acids and proteins. Adv. Protein Chem. 11, 277335.CrossRefGoogle Scholar
Hall, D. O. (1972). Nomenclature for isolated chloroplasts Nature New Biol. 235, 125–6.CrossRefGoogle Scholar
Hallter, U. W. & Park, R. B. (1969 a). The photosynthetic light reactions in chemically fixed Anacystis nidulans, Chlorella pyrenoidosa and Porphyridium cruentum. Pl. Physiol., Lancaster 44, 535–40.CrossRefGoogle Scholar
Hallier, U. W. & Park, R. B. (1969 b). Photosynthetic light reactions in chemically fixed spinach thylacoids. Pl. Physiol., Lancaster 44, 544–46.CrossRefGoogle Scholar
Hayat, M. A.Principles and Techniques in Electron Microscopy. Biological applications. Vol. I. Van Nostrand Reinhold Co.CrossRefGoogle Scholar
Hopwood, D. (1967). Some aspects of fixation with glutaraldehyde: a biochemical and histological comparison of the effects of formaldehyde and glutaraldehyde fixation on various enzymes and collagen, with a note on the penetration of glutaraldehyde into liver. J. Anat. 101, 8392.Google Scholar
Hopwood, D. (1968). Some aspects of fixation by glutaraldehyde and formaldehyde. J. Anat. 103, 581.Google Scholar
Janigan, D. T. (1964). The effects of aldehyde fixation on β glucuronidase and β galactosidase, N-acetyl-β-glucosaminidase and β glucosidase in tissue blocks. Lab. Invest. 13, 1038–49.Google ScholarPubMed
Janigan, D. T. (1965). The effects of aldehyde fixation on acid phosphatase activity in tissue blocks. J. Histochem. Cytochem. 13, 476–83.CrossRefGoogle ScholarPubMed
Ludlow, C. J. & Park, R. B. (1969). Action spectra for photosystems I and II in formaldehyde-fixed algae. Pl. Physiol., Lancaster 44, 540–4.CrossRefGoogle Scholar
Packer, L., Allen, J. M. & Starks, M. (1968). Lightinduced ion transport in glutaraldehyde-fixed chloroplasts: Studies with Nigericin. Archs Biochem. Biophys. 128, 142–52.CrossRefGoogle ScholarPubMed
Packer, L., Wrigglesworth, J. M., Fortes, P. A. G. & Pressman, B. C. (1968). Expansion of the inner membrane compartment and its relation to mitochondrial volume and ion transport. J. cell Biol. 39, 382–91.CrossRefGoogle ScholarPubMed
Park, R. B., Kelly, J., Drury, S. & Sauer, K. (1966). The Hill reaction of chloroplasts isolated from glutaraldehyde-fixed spinach leaves. Proc. natn. Acad. Sci. U.S.A. 55, 1056–62.CrossRefGoogle ScholarPubMed
Reis, P. J. & Tunks, D. A. (1969). Evaluation of formaldehyde treated casein for wool growth and nitrogen retention. Aust. J. agric. Res. 20, 775–81.CrossRefGoogle Scholar
Robertson, E. A. & Schultz, R. L. (1970). Impurities in commercial glutaraldehyde and their effect on the fixation of brain. J. Ultrastruct. Res. 30, 275–87.CrossRefGoogle ScholarPubMed
Sabatini, D. D., Bensch, K. & Barrnett, R. J. (1962). New means of fixation for electron microscopy and histochemistry. Anat. Rec. 142, 274.Google Scholar
Sabatini, D. D., Bensch, K. & Babbnett, R. J. (1963). The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. cell Biol. 17, 1958.CrossRefGoogle ScholarPubMed
Sabatini, D. D., Miller, F. & Barrnett, R. J. (1964). Aldehyde fixation for morphological and enzyme histochemical studies with the electron microscope. J. Histochem. Cytochem. 12, 5771.CrossRefGoogle ScholarPubMed
Utsumi, K. & Packer, L. (1967). Glutaraldehyde-fixed mitochondria. I. Enzyme activity, ion translocation and conformational changes. Archs Biochem. Biophys. 121, 633–40.CrossRefGoogle ScholarPubMed
Walker, D. A. (1965). Corellation between photosynthetic activity and membrane integrity in isolated pea chloroplasts. Pl. Physiol., Lancaster 40, 1157–61.CrossRefGoogle Scholar
West, J. & Hill, R. (1967). Carbon dioxide and the reduction of indophenol and ferricyanide by chloroplasts. Pl. Physiol., Lancaster 42, 819–26.CrossRefGoogle ScholarPubMed
West, J. & Mangan, J. L. (1970). Effects of glutaraldehyde on the protein loss and photochemical properties of Kale chloroplasts: Preliminary studies on food conversion. Nature, Lond. 228, 466–8.CrossRefGoogle ScholarPubMed
West, J. & Mangan, J. L. (1972). The digestion of chloroplasts in the rumen of sheep and the effect of disruption and glutaraldehyde treatment. Proc. Nutr. Soc. 31, 108A–9A.Google Scholar
West, J. & Packer, L. (1970). The effect of glutaraldehyde on light-induced H+ changes, electron transport and phosphorylation in pea chloroplasts. J. Bioenergetics 1, 405–12.CrossRefGoogle ScholarPubMed
West, K. R. & Wiskich, J. T. (1968). Photosynthetie control by isolated pea chloroplasts. Biochem. J. 109, 527–32.CrossRefGoogle Scholar
Zelter, S. Z., Leroy, F. & Tissier, J. P. (1970). Protection des protéeins alimentaires contre la desamination bacterienne dans le rumen. I. Études in vitro: comportement en milieu de rumen de quelque proteéines tannéees avec du tannin de chataignier ou certain aldéehydes (formaldéehyde, glutaraldéehyde, glyoxal.) Annls Biol. Anim. Biockim. Biophys. 10, 111–22.CrossRefGoogle Scholar