Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T15:05:46.044Z Has data issue: false hasContentIssue false

Climate change impacts on winter wheat yield change – which climatic parameters are crucial in Pannonian lowland?

Published online by Cambridge University Press:  23 August 2012

B. LALIC*
Affiliation:
Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
J. EITZINGER
Affiliation:
Institute of Meteorology, University of Natural Resources and Life Sciences, Vienna, Austria CzechGlobe – Centre for Global Climate Change Impacts Studies, Bělidla986, 4a, 603 00 Brno, Czech Republic
D. T. MIHAILOVIC
Affiliation:
Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
S. THALER
Affiliation:
Institute of Meteorology, University of Natural Resources and Life Sciences, Vienna, Austria
M. JANCIC
Affiliation:
Faculty of Agriculture, University of Novi Sad, Novi Sad, Serbia
*
*To whom all correspondence should be addressed. Email: [email protected]; [email protected].

Summary

One of the main problems in estimating the effects of climate change on crops is the identification of those factors limiting crop growth in a selected environment. Previous studies have indicated that considering simple trends of either precipitation or temperature for the coming decades is insufficient for estimating the climate impact on yield in the future. One reason for this insufficiency is that changes in weather extremes or seasonal weather patterns may have marked impacts.

The present study focuses on identifying agroclimatic parameters that can identify the effects of climate change and variability on winter wheat yield change in the Pannonian lowland. The impacts of soil type under past and future climates as well as the effect of different CO2 concentrations on yield formation are also considered. The Vojvodina region was chosen for this case study because it is a representative part of the Pannonian lowland.

Projections of the future climate were taken from the HadCM3, ECHAM5 and NCAR-PCM climate models with the SRES-A2 scenario for greenhouse gas (GHG) emissions for the 2040 and 2080 integration periods. To calibrate and validate the Met&Roll weather generator, four-variable weather data series (for six main climatic stations in the Vojvodina region) were analysed. The grain yield of winter wheat was calculated using the SIRIUS wheat model for three different CO2 concentrations (330, 550 and 1050 ppm) dependent on the integration period. To estimate the effects of climatic parameters on crop yield, the correlation coefficient between crop yield and agroclimatic indices was calculated using the AGRICLIM software. The present study shows that for all soil types, the following indices are the most important for winter wheat yields in this region: (i) the number of days with water and temperature stress, (ii) the accumulated precipitation, (iii) the actual evapotranspiration (ETa) and (iv) the water deficit during the growing season. The high positive correlations between yield and the ETa, accumulated precipitation and the ratio between the ETa and reference evapotranspiration (ETr) for the April–June period indicate that water is and will remain a major limiting factor for growing winter wheat in this region. Indices referring to negative impact on yield are (i) the number of days with a water deficit for the April–June period and (ii) the number of days with maximum temperature above 25 °C (summer days) and the number of days with maximum temperature above 30 °C (tropical days) in May and June. These indices can be seen as indicators of extreme weather events such as drought and heat waves.

Type
Climate Change and Agriculture Research Papers
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexandrov, V., Eitzinger, J., Cajic, V. & Oberforster, M. (2002). Potential impact of climate change on selected agricultural crops in north-eastern Austria. Global Change Biology 8, 372389.CrossRefGoogle Scholar
Anderson, J., Arblaster, K., Bartley, J., Cooper, T., Kettunen, M., Kaphengst, T., Leipprand, A., Laaser, C., Umpfenbach, K., Kuusisto, E., Lepistö, A. & Holmberg, M. (2008). Climate Change-Induced Water Stress and its Impact on Natural and Managed Ecosystems. Study IP/A/CLIM/ST/2007-06. Brussels: European Parliament.Google Scholar
Arnell, N. W. (2004). Climate change and global water resources: SRES emissions and socio economic scenarios. Global Environmental Change 14, 3152.CrossRefGoogle Scholar
Attaher, S., Medany, M. A., Abdel Aziz, A. A. & El-Gindy, A. (2006). Irrigation-water demands under current and future climate conditions in Egypt. Misr Journal of Agricultural Engineering 23, 10771089.Google Scholar
Bates, B. C., Kundzewicz, Z. W., Wu, S. & Palutikof, J. P. (2008). Analysing regional aspects of climate change and water resources. In Climate Change and Water (Eds Bates, B. C., Kundzewicz, Z. W., Wu, S. & Palutikof, J. P.), pp. 77113. IPCC Technical Paper 6. Geneva: IPCC Secretariat.Google Scholar
Beniston, M., Stephenson, D. B., Christensen, O. B., Ferro, C. A. T., Frei, C., Goyette, S., Halsnaes, K., Holt, T., Jylhä, K., Koffi, B., Palutikof, J., Schöll, R., Semmler, T. & Woth, K. (2007). Future extreme events in European climate: an exploration of regional climate model projections. Climatic Change 81, 7195.CrossRefGoogle Scholar
Chimielewski, F. M. & Rötzer, T. (2002). Annual and spatial variability of the beginning of the growing season in Europe in relation to air temperature changes. Climate Research 19, 257264.CrossRefGoogle Scholar
Deressa, T. T., Hassan, R. M. & Ringler, C. (2011). Perception of and adaptation to climate change by farmers in the Nile basin of Ethiopia. Journal of Agricultural Science, Cambridge 149, 2331.CrossRefGoogle Scholar
Downing, T. E., Harrison, P. A., Butterfield, R. E. & Lonsdale, K. G. (2000). Climate Change, Climatic Variability and Agriculture in Europe. An Integrated Assessment, Research Report No. 21. Oxford: Environmental Change Unit, University of Oxford.Google Scholar
Downing, T. E., Butterfield, R. E., Edmonds, B., Knox, J. W., Moss, S., Piper, B. S., Weatherhead, E. K. & the CCDeW Project Team (2003). Climate Change and the Demand for Water, Research Report. Oxford: Stockholm Environment Institute, Oxford Office.Google Scholar
Dubrovsky, M. (1996). Met&Roll: the stochastic generator of daily weather series for the crop growth model. Meteorologicke Zpravy 49, 97105.Google Scholar
Dubrovsky, M. (1997). Creating daily weather series with use of the weather generator. Environmetrics 8, 409424.3.0.CO;2-0>CrossRefGoogle Scholar
Dubrovsky, M., Zalud, Z. & Stastna, M. (2000). Sensitivity of CERES – Maize yields to statistical structure of daily weather series. Climatic Change 46, 447472.CrossRefGoogle Scholar
Eitzinger, J., Orlandini, S., Stefanski, R. & Naylor, R. E. L. (2010). Climate change and agriculture: introductory editorial. Journal of Agricultural Science, Cambridge 148, 499500.CrossRefGoogle Scholar
Ellsworth, D., Oren, R., Huang, C., Phillips, N. & Hendrey, G. R. (1995). Leaf and canopy response to elevated CO2 in a pine forest under free air CO2 enrichment. Oecologia 104, 139146.CrossRefGoogle Scholar
FAO/IIASA/ISRIC/ISSCAS/JRC (2009). Harmonized World Soil Database (version 1.1). Rome: FAO and Laxenburg, Austria: IIASA.Google Scholar
Foulkes, M. J., Scott, R. K. & Sylvester-Bradley, R. (2001). The ability of wheat cultivars to withstand drought in UK conditions. Journal of Agricultural Science, Cambridge 137, 116.CrossRefGoogle Scholar
Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M., Johns, T. C., Mitchell, J. F. B. & Wood, R. A. (2000). The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics 16, 147168.CrossRefGoogle Scholar
Gualdi, S., Navarra, A., Guilyardi, E. & Delecluse, P. (2003). Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM. Annals of Geophysics 46, 126.Google Scholar
Hagemann, S., Machenhauer, B., Jones, R., Christensen, O. B., Deque, M., Jacob, D. & Vidale, P. L. (2004). Evaluation of water and energy budgets in regional climate models applied over Europe. Climate Dynamics 23, 547567.CrossRefGoogle Scholar
Harrison, P. A. & Butterfield, R. E. (1995). Effects of climate change on Europe – wide winter wheat and sunflower productivity. Climate Research 7, 225241.CrossRefGoogle Scholar
Harrison, P. A., Butterfield, R. E. & Downing, T. E. (1995). Climate Change and Agriculture in Europe – Assessment of Impacts and Adaptation. Oxford: Environmental Change Unit, University of Oxford.Google Scholar
Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenburg, A. & Maskell, K. (1996). Climate Change 1995: The Science of Climate Change. Cambridge: Cambridge University Press.Google Scholar
Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der linden, P. J., Dai, X., Maskell, K. & Johnson, C. A. (2001). IPCC Third Assessment Report: Climate Change 2001. The Scientific Basis. Cambridge: Cambridge University Press.Google Scholar
Iqbal, M. A., Eitzinger, J., Formayer, H., Hassan, A. & Heng, L. K. (2011). A simulation study for assessing yield optimization and potential for water reduction for summer-sown maize under different climate change scenarios. Journal of Agricultural Science, Cambridge 149, 129143.CrossRefGoogle Scholar
Jamieson, P. D., Semenov, M. A., Brooking, I. R. & Francis, G. S. (1998). Sirius: a mechanistic model of wheat response to environmental variation. European Journal of Agronomy 8, 161179.CrossRefGoogle Scholar
Kamara, A. Y., Menkir, A., Badu-Apraku, B. & Ibikunle, O. (2003). The influence of drought stress on growth, yield and yield components of selected maize genotypes.Journal of Agricultural Science, Cambridge 141, 4350.CrossRefGoogle Scholar
Klik, A. & Eitzinger, J. (2010). Impact of climate change on soil erosion and the efficiency of soil conservation practices in Austria. Journal of Agricultural Science, Cambridge 148, 529541.CrossRefGoogle Scholar
Kristensen, K., Schelde, K. & Olesen, J. E. (2011). Winter wheat yield response to climate variability in Denmark. Journal of Agricultural Science, Cambridge 149, 3347.CrossRefGoogle Scholar
Lalic, B. (2006). Introduction of Crop Modelling Tools into a Serbian Crop Production, AGRIDEMA Pilot Assessment Report. Serbia: University of Novi Sad.Google Scholar
Lalic, B., Pankovic, L., Mihailovic, D. T., Malesevic, M. & Arsenic, I. (2007). Modeli biljne proizvodnje i njihova upotreba u prognozi dinamike vegetacije (Crop models and its use in vegetation dynamic forecasting). A Periodical of Scientific Research on Field and Vegetable Crops 44, 317325.Google Scholar
Lalic, B., Mihailovic, D. T. & Malesevic, M. (2008). Estimating winter wheat yield and phenology dynamics using Met and Roll weather generator. In Environmental, Health and Humanity Issues in the Down Danubian Region. Multidisciplinary Approaches. Proceedings of the Ninth International Symposium on Interdisciplinary Regional Research, University of Novi Sad, 21–22 June 2007 (Eds Mihailovic, D. T. & Vojinovic-Miloradov, M.), pp. 233244. New York: World Scientific Publishing.Google Scholar
Lalic, B., Mihailovic, D. T. & Malesevic, M. (2009). Introduction of crop modelling tools into Serbian crop production: calibration and validation of models. In Climate Variability, Modeling Tools and Agricultural Decision-Making (Ed. Utset, A.), pp. 331346. New York: Nova Science Publishers Inc.Google Scholar
Laprise, R. (2008). Regional climate modelling. Journal of Computational Physics 227, 36413666.CrossRefGoogle Scholar
Machenhauer, B., Windelband, M., Botzet, M., Christensen, J. H., Deque, M., Jones, R. G., Ruti, P. M. & Visconti, G. (1998). Validation and Analysis of Regional Present-day Climate and Climate Change Simulations over Europe, Report No. 275. Hamburg, Germany: Max-Planck-Institute for Meteorology.Google Scholar
Mihailovic, D. T., Lalic, B., Arsenic, I. & Malinovic, S. (2004). Climate conditions for seed production. In Seed Breeding, Vol. 1 (Eds Milosevic, M. & Malesevic, M.), pp. 243266. Novi Sad, Serbia: Institute for Field and Vegetable Crops.Google Scholar
Mendelson, R. & Dinar, A. (1999). Climate change, agriculture, and developing countries: does adaptation matter? World Bank Research Observer 14, 277293.CrossRefGoogle Scholar
Milly, P. C. D., Wetherald, R. T., Dunne, K. A. & Delworth, T. L. (2002). Increasing risk of great floods in a changing climate. Nature 415, 514517.CrossRefGoogle Scholar
Nelson, G. C., Rosegrant, M. W., Koo, J., Robertson, R., Sulser, T., Zhu, T., Ringler, C., Msangi, S., Palazzo, A., Batka, M., Magalhaes, M., Valmonte-Santos, R., Ewing, M. & Lee, D. (2009). Climate Change Impact on Agriculture and Costs of Adaptation. Washington, DC: International Food Policy Research Institute.Google Scholar
Palmer, T. N. & Raisanen, J. (2002). Quantifying the risk of extreme seasonal precipitation events in a changing climate. Nature 415, 512514.CrossRefGoogle Scholar
Patil, R. H., Laegdsmand, M., Olesen, J. E. & Porter, J. R. (2010). Growth and yield response of winter wheat to soil warming and rainfall patterns. Journal of Agricultural Science, Cambridge 148, 553566.CrossRefGoogle Scholar
Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E. (2007). Climate Change 2007 – Impacts, Adaptation and Vulnerability Contribution of Working Group II to the Fourth Assessment Report of the IPCC. Cambridge: Cambridge University Press.Google Scholar
Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U. & Tompkins, A. (2003). The Atmospheric General Circulation Model ECHAM-5. Part I: Model Description, Report No. 349. Hamburg, Germany: Max-Planck-Institut fur Meteorologie.Google Scholar
Rosenzweig, C. & Iglesias, A. (1994). Implication of Climate Change for International Agriculture: Crop Modeling Study. Washington, DC: EPA.Google Scholar
Rowell, D. P. & Jones, R. G. (2006). The causes and uncertainty of future summer drying over Europe. Climate Dynamics 27, 281299.CrossRefGoogle Scholar
Saxton, K. E., Rawls, W. J., Romberger, J. S. & Papendick, R. I. (1986). Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal 50, 10311036.CrossRefGoogle Scholar
Semenov, M. A. & Porter, J. R. (1995). Climatic variability and the modelling of crop yields. Agricultural and Forest Meteorology 73, 265283.CrossRefGoogle Scholar
Sivakumar, M. V. K. & Motha, R. (2007). Managing Weather and Climate Risks in Agriculture in Agriculture. Berlin: Springer.Google Scholar
Smith, P. & Olesen, J. E. (2010). Synergies between the mitigation of, and adaptation to, climate change in agriculture. Journal of Agricultural Science, Cambridge 148, 543552.CrossRefGoogle Scholar
Sokal, R. & Braumann, C. A. (1980). Significance test for coefficients of variation and variability profiles. Systematic Zoology 29, 5066.CrossRefGoogle Scholar
Statistical Office of the Republic of Serbia (2006). System of National Accounts of Republic of Serbia 1997–2004, Vol. 76. Belgrade, Serbia: Statistical Office of the Republic of Serbia.Google Scholar
Stigter, K. (2010). Applied Agrometeorology. Berlin: Springer.CrossRefGoogle Scholar
Thaler, S., Eitzinger, J., Trnka, M. & Dubrovsky, M. (2012). Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central Europe. Journal of Agricultural Science. Published online. DOI:10.1017/S0021859612000093.CrossRefGoogle Scholar
Trnka, M., Dubrovský, M., Semerádová, D., Eitzinger, J., Olesen, J., Mozny, M., Hlavinka, P., Balek, J. & Stepanek, P. (2008). AgriCLIM – software package for assessment changes in agroclimatic conditions - results and planned use in COST 734 (abstract). In Book of Abstracts Symposium on Climate Change and Variability – Agrometeorological Monitoring and Coping Strategies for Agriculture, Oscarsborg, Norway: Bioforsk, June 3–6. FOKUS Bioforsk Vol. 8, p. 50.Google Scholar
Trnka, M., Eitzinger, J., Dubrovsky, M., Semeradova, D., Stepanek, P., Hlavinka, P., Balek, J., Skalak, P., Farda, A., Formayer, H. & Zalud, Z. (2010). Is rainfed crop production in central Europe at risk? Using a regional climate model to produce high resolution agroclimatic information for decision makers. Journal of Agricultural Science, Cambridge 148, 639656.CrossRefGoogle Scholar
Vidale, P. L., Lüthi, D., Wegmann, R. & Schär, C. (2007). European summer climate variability in a heterogeneous multi-model ensemble. Climatic Change 81, 209232.CrossRefGoogle Scholar
Vucic, N. (1976). Irrigation of Agricultural Crops. Novi Sad, Serbia: Faculty of Agriculture, University of Novi Sad (In Serbian).Google Scholar
Washington, W. M., Weatherly, J. W., Meehl, G. A., Semtner, A. J. Jr, Bettge, T. W., Craig, A. P., Strand, W. G. Jr, Arblaster, J., Wayland, V. B., James, R. & Zhang, Y. (2000). Parallel climate model (PCM) control and transient simulations. Climate Dynamics 16, 755774.CrossRefGoogle Scholar
Watson, R. T., Zinyowera, M. C. & Moss, R. H. (1996). Climate Change 1995. Impacts, Adaptation and Mitigation of Climate Change: Scientific-Technical Analyses. Contribution of WG II to the Second Assessment Report of the IPCC. Cambridge: Cambridge University Press.Google Scholar
Wolf, J. & van Diepen, C. A. (1995). Effects of climate change on grain maize yield potential in the European Community. Climatic Change 29, 299331.CrossRefGoogle Scholar
Zivkovic, B., Nejgebauer, V., Tanasijevic, D. J., Miljkovic, N., Stojkovic, L. & Drezgic, P. (1979). Soils of Vojvodina Region (in Serbian, with summaries in English, German and Russian). Novi Sad, Serbia: Institute for Agricultural Research.Google Scholar