Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T14:32:44.903Z Has data issue: false hasContentIssue false

Assessment of sulphur deficiency in commercial oilseed rape crops from plant analysis

Published online by Cambridge University Press:  01 March 2013

X. SARDA
Affiliation:
Université de Caen Basse-Normandie, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, 14032 CAEN Cedex, France INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, 14032 CAEN Cedex, France
S. DIQUELOU
Affiliation:
Université de Caen Basse-Normandie, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, 14032 CAEN Cedex, France INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, 14032 CAEN Cedex, France
M. ABDALLAH
Affiliation:
Université de Caen Basse-Normandie, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, 14032 CAEN Cedex, France INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, 14032 CAEN Cedex, France
N. NESI
Affiliation:
UMR 1349 INRA-Agrocampus Ouest-Université de Rennes 1, Institut de Génétique, Environnement et Protection des Plantes, Domaine de la Motte, BP 35327, 35653 Le Rheu Cedex, France
O. CANTAT
Affiliation:
UMR 6554 CNRS Littoral, Environnement, Télédétection, Géomatique, Esplanade de la Paix, Université de Caen Basse-Normandie, 14032 Caen Cedex, France
P. LE GOUEE
Affiliation:
UMR 6554 CNRS Littoral, Environnement, Télédétection, Géomatique, Esplanade de la Paix, Université de Caen Basse-Normandie, 14032 Caen Cedex, France
J. C. AVICE
Affiliation:
Université de Caen Basse-Normandie, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, 14032 CAEN Cedex, France INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, 14032 CAEN Cedex, France
A. OURRY*
Affiliation:
Université de Caen Basse-Normandie, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, 14032 CAEN Cedex, France INRA, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, 14032 CAEN Cedex, France
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

Sulphur (S) is one of the six main macroelements required to sustain the growth of plants. Sources include soil, fertilizer and atmospheric deposition, which has been reduced by 85% over the last three decades. Risks of S deficiencies are now recognized in high S-demanding species such as Brassica napus L. With the aims of evaluating the risk of excessive or insufficient fertilization and identifying robust relationships that may be used as plant S status indicators, 57 commercial crops of oilseed rape were selected among contrasting soils and along a rainfall gradient that may affect soil S availability. Cultivation practices were investigated and the S and nitrogen (N) concentrations of soil, senescing leaves, stems and seeds were analysed. Despite an excessive organic N supply and large variation in S supply (from 0 to 112 kg S/ha), principal component analysis using 43 parameters indicated that seed yield was poorly related to N and S fertilization rates. While the N and protein-N concentrations in seeds were inversely related to oil and glucosinolate concentrations, they were linked to S and sulphate (SO42−) accumulation in the seeds. Sulphate concentrations in senescing leaves, stems or seeds could be deduced from total S concentrations, as they were positively and highly correlated. Sulphate accounted for on average 0·69 of total S in senescing leaves with minimum and maximum values of 0·007 and 0·94, which revealed conditions of limited and excess supply of S, respectively. This high variation of SO42− concentration in leaves can be interpreted as the result of its mobilization triggered by S deficiency, but cannot be used alone as an indicator of plant S status. A comparison with plants grown in controlled conditions under different S supplies suggests that the intensity of S starvation affects N metabolism, leading to NO3 (nitrate) accumulation. It is further suggested that dual evaluation of SO42− and NO3 concentrations in senescing leaves could be used at the vegetative stage as a field indicator to adjust S fertilization.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdallah, M., Dubousset, L., Meuriot, F., Etienne, P., Avice, J. C. & Ourry, A. (2010). Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L. Journal of Experimental Botany 61, 26352646.Google Scholar
Abdallah, M., Etienne, P., Ourry, A. & Meuriot, F. (2011). Do initial S reserves and mineral S availability alter leaf S-N mobilization and leaf senescence in oilseed rape? Plant Science 180, 511520.CrossRefGoogle ScholarPubMed
Ahmad, G., Jan, A., Arif, M., Jan, M. T. & Khattak, R. A. (2007). Influence of nitrogen and sulphur fertilisation on quality of canola (Brassica napus L.) under rainfed conditions. Journal of Zhejiang University Science B 8, 731737.Google Scholar
Asare, E. & Scarisbrick, D. H. (1995). Rate of nitrogen and sulphur fertilizers on yield, yield components and seed quality of oilseed rape (Brassica napus L.). Field Crop Research 44, 4146.Google Scholar
Blake-Kalff, M. M. A., Hawkesford, M. J., Zhao, F. J. & Mcgrath, S. P. (2000). Diagnosing sulfur deficiency in field-grown oilseed rape (Brassica napus L.) and wheat (Triticum aestivum L.). Plant and Soil 225, 95107.Google Scholar
Bodet, J. M., Hacala, S., Aubert, C. & Texier, C. (2001). Fertiliser avec les Engrais de Ferme. Paris, France: Institut de l'Elevage, ITAVI, ITCF, ITP.Google Scholar
Borcard, D., Legendre, P. & Drapeau, P. (1992). Partialling out the spatial component of ecological variation. Ecology 73, 10451055.Google Scholar
Browse, J., Mccourt, P. & Somerville, C. (1986). A mutant of Arabidopsis déficient in C18-3 and C16-3 leaf lipids. Plant Physiology 81, 859864.Google Scholar
Davidian, J. C. & Kopriva, S. (2010). Regulation of sulfate uptake and assimilation – the same or not the same? Molecular Plant 3, 2, 314325.Google Scholar
Desclos, M., Etienne, P., Coquet, L., Jouenne, T., Bonnefoy, J., Segura, R., Reze, S., Ourry, A. & Avice, J. C. (2009). A combined 15N tracing/proteomics study in Brassica napus reveals the chronology of proteomics events associated to N remobilisation during leaf senescence induced by nitrate limitation or starvation. Proteomics 9, 35803608.Google Scholar
Dubousset, L., Abdallah, M., Desfeux, A. S., Etienne, P., Meuriot, F., Hawkesford, M. J., Gombert, J., Segura, R., Bataille, M. P., Reze, S., Bonnefoy, J., Ameline, A. F., Ourry, A., Le Dily, F. & Avice, J. C. (2009). Remobilization of leaf S compounds and senescence in response to restricted sulphate supply during the vegetative stage of oilseed rape are affected by mineral N availability. Journal of Experimental Botany 60, 32393253.CrossRefGoogle Scholar
Dubousset, L., Etienne, P. & Avice, J. C. (2010). Is the remobilization of S- and N-reserves for seed filling of winter oilseed rape modulated by sulphate restrictions occurring at different growth stages? Journal of Experimental Botany 61, 43134324.Google Scholar
Dubuis, P. H., Marazzi, C., Staedler, E. & Mauch, F. (2005). Sulphur deficiency causes a reduction in antimicrobial potential and leads to increased disease susceptibility of oilseed rape. Journal of Phytopathology 153, 2736.Google Scholar
Farre, E. & Molin, R. (2002). Engrais Azotés Soufrés, pas d'Intérêt en cas d'Apport Organique. La Tour de Salvagny, France: Chambre d'Agriculture du Rhône.Google Scholar
Fismes, J., Vong, P. C., Guckert, A. & Frossard, E. (2000). Influence of sulfur on apparent N-use efficiency, yield and quality of oilseed rape (Brassica napus L.) grown on a calcareous soil. European Journal of Agronomy 12, 127141.Google Scholar
Glass, A. D. M. (2003). Nitrogen use efficiency of crop plants: physiological constraints upon nitrogen absorption. Critical Reviews in Plant Sciences 22, 453470.Google Scholar
Gombert, J., Etienne, P., Ourry, A. & Le Dily, F. (2006). The expression patterns of SAG12/Cab genes reveal the spatial and temporal progression of leaf senescence in Brassica napus L. with sensitivity to the environment. Journal of Experimental Botany 57, 19491956.Google Scholar
Grant, C. A., Clayton, G. W. & Johnston, A. M. (2003). Sulphur fertilizer and tillage effects on canola seed quality in the Black soil zone of western Canada. Canadian Journal of Plant Science 83, 745758.Google Scholar
Hawkesford, M. J. & Wray, J. L. (2000). Molecular genetics of sulphur assimilation. Advances in Botanical Research 33, 159223.Google Scholar
Howarth, J. R., Parmar, S., Barraclough, P. B. & Hawkesford, M. J. (2009). A sulphur deficiency-induced gene, sdi1, involved in the utilization of stored sulphate pools under sulphur-limiting conditions has potential as a diagnostic indicator of sulphur nutritional status. Plant Biotechnology Journal 7, 200209.CrossRefGoogle ScholarPubMed
Jackson, J. D. (2000). Effects of nitrogen and sulphur on canola yield and nutrient uptake. Agronomy Journal 92, 644649.Google Scholar
Jankowski, K., Budzyński, W. & Szymanowski, A. (2008). Effect of sulfur on the quality of winter rape seeds. Journal of Elementology 13, 521534.Google Scholar
Kant, S., Bi, Y-M. & Rothstein, S. J. (2011). Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. Journal of Experimental Botany 62, 14991509.Google Scholar
Kaur, G., Chandna, R., Pandey, R., Abrol, Y. P., Iqbal, M. & Ahmad, A. (2011). Sulfur starvation and restoration affect nitrate uptake and assimilation in rapeseed. Protoplasma 248, 299311.Google Scholar
Kopriva, S. & Rennenberg, H. (2004). Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism. Journal of Experimental Botany 55, 18311842.CrossRefGoogle Scholar
Koprivova, A., Suter, M., Op Den Camp, R., Brunold, C. & Kopriva, S. (2000). Regulation of sulfate assimilation by nitrogen in Arabidopsis. Plant Physiology 122, 737746.Google Scholar
Malhi, S. S. & Gill, K. S. (2002). Effectiveness of sulphate-S fertilization at different growth stages for yield, seed quality and S uptake of canola. Canadian Journal of Plant Science 82, 665674.CrossRefGoogle Scholar
Malhi, S. S., Solberg, E. D. & Nyborg, M. (2005). Influence of formulation of elemental S fertilizer on yield, quality and S uptake of canola seed. Canadian Journal of Plant Science 85, 793802.Google Scholar
Malhi, S. S., Gan, Y. & Raney, J. P. (2007). Yield, seed quality, and sulfur uptake of Brassica oilseed crops in response to sulfur fertilization. Agronomy Journal 99, 570577.CrossRefGoogle Scholar
Mathot, M., Thélier-Huché, L. & Lambert, R. (2009). Sulphur and nitrogen content as sulphur deficiency indicator for grasses. European Journal of Agronomy 30, 172176.Google Scholar
Mcgrath, S. P., Zhao, J. & Lombi, E. (2002). Phytoremediation of metals, metalloids and radionuclides. Advances in Agronomy 75, 156.Google Scholar
Migge, A., Bork, C., Hell, R. & Becker, T. W. (2000). Negative regulation of nitrate reductase gene expression by glutamine or asparagine accumulating in leaves of sulfur-deprived tobacco. Planta 211, 587595.Google Scholar
Na, G. & Salt, D. E. (2011). The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants. Environmental and Experimental Botany 72, 1825.Google Scholar
Nikiforova, V. J., Kopka, J., Tolstikov, V., Fiehn, O., Hopkins, L., Hawkesford, M. J., Hesse, H. & Hoefgen, R. (2005). Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiology 138, 304318.Google Scholar
Niknahad-Gharmakher, H. (2008). Minéralisation du soufre associée à la décomposition des matières organiques dans les sols et relations avec les dynamiques du carbone et de l'azote. Ph.D. Thesis, Agro Paris Tech, Paris, France.Google Scholar
Nuttall, W. F., Ukrainetz, H., Stewart, J. W. B. & Spurr, D. T. (1987). The effect of nitrogen, sulphur and boron on yield and quality of rapseed (Brassica napus L. and B. campestris L.). Canadian Journal of Soil Science 67, 545559.Google Scholar
Ourry, A., Gonzalez, B. & Boucaud, J. (1989). Osmoregulation and role of nitrate during regrowth after cutting of ryegrass (Lolium perenne). Physiologia Plantarum 76, 177182.Google Scholar
Pagani, A. & Echeverria, H. E. (2011). Performance of sulfur diagnostic methods for corn. Agronomy Journal 103, 413421.Google Scholar
Pellet, D., Mercier, E., Balestra, U., Lavanchy, J. C., Pfeifer, H. R., Keiser, A. & Bezencon, N. (2003). Optimisation of sulphur fertilisation by deficiency risk assessment. I. Winter oilseed rape. Revue Suisse d'Agriculture 35, 161167.Google Scholar
Prosser, I. M., Purves, J. V., Saker, L. R. & Clarkson, D. T. (2001). Rapid disruption of nitrogen metabolism and nitrate transport in spinach plants deprived of sulphate. Journal of Experimental Botany 52, 113121.Google Scholar
Rondanini, D. P., Gomez, N. V., Agosti, M. B. & Miralles, D. J. (2012). Global trends of rapeseed grain yield stability and rapeseed-to-wheat yield ratio in the last four decades. European Journal of Agronomy 37, 5665.Google Scholar
Schnug, E., Haneklaus, S. & Murphy, D. (1993). Impact of sulphur fertilization on fertilizer nitrogen efficiency. Sulphur in Agriculture 17, 812.Google Scholar
Takahashi, H., Kopriva, S., Giordano, M., Saito, K. & Hell, R. (2011). Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annual Review Plant Biology 62, 157184.Google Scholar
Tallec, T., Diquelou, S., Lemauviel, S., Cliquet, J. B., Lesuffleur, F. & Ourry, A. (2008 a). Nitrogen: sulphur ratio alters competition between Trifolium repens and Lolium perenne under cutting: production and competitive abilities. European Journal of Agronomy 29, 94101.Google Scholar
Tallec, T., Diquelou, S., Fauveau, C., Bataille, M. P. & Ourry, A. (2008 b). Effects of nitrogen and sulphur gradients on plant competition, N and S use efficiencies and species abundance in a grassland plant mixture. Plant and Soil 313, 267282.Google Scholar
Thomas, S. G., Bilsborrow, P. E., Hocking, T. J. & Bennett, J. (2000). The effect of sulphur deficiency on the growth and metabolism of sugar beet (Beta vulgaris cv. Druid). Journal of the Science of Food and Agriculture 80, 20572062.Google Scholar
Withers, P. J. A. & O'donnell, F. M. (1994). The response of double-low winter oilseed rape to fertiliser sulphur. Journal of the Science of Food and Agriculture 66, 1, 93101.Google Scholar
Zhao, F. & Mcgrath, S. P. (1994). Comparison of sulphur uptake by oilseed rape and the soil sulphur status of two adjacent fields with different soil series. Soil Use and Management 10, 4750.Google Scholar
Zhao, F. J., Bilsborrow, P. E., Evans, E. J. & Mcgrath, S. P. (1997). Nitrogen to sulphur ratio in rapeseed and in rapeseed protein and its use in diagnosing sulphur deficiency. Journal of Plant Nutrition 20, 549558.Google Scholar
Zhao, F. J., Hawkesford, M. J. & Mcgrath, S. P. (1999). Sulphur assimilation and effects on yield and quality of wheat. Journal of Cereal Science 30, 117.Google Scholar
Zhao, F. J., Mcgrath, S. P., Blake-Kalff, M. M. A., Link, A. & Tucker, M. (2002). Crop responses to sulphur fertilisation in Europe. In Proceedings of the International Fertiliser Society 504. Leek, UK: The International Fertiliser Society.Google Scholar
Zuber, H., Davidian, J-C., Wirtz, M., Hell, R., Belghazi, M., Thompson, R. & Gallardo, K. (2010). Sultr4;1 mutant seeds of Arabidopsis have an enhanced sulphate concentration and modified proteome suggesting metabolic adaptations to altered sulphate compartmentalization. BMC Plant Biology 10, 78. doi:10.1186/1471-2229-10-78.Google Scholar