Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T23:07:26.578Z Has data issue: false hasContentIssue false

Agronomic performance of maize populations divergently selected for diferulate cross-linkage

Published online by Cambridge University Press:  15 January 2016

R. SANTIAGO*
Affiliation:
Dpto. Biología Vegetal y Ciencias del Suelo, Facultad de Biología, Universidad de Vigo, Agrobiología Ambiental. Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la Misión Biológica de Galicia (CSIC), Campus As Lagoas Marcosende, 36310, Vigo, Spain
J. BARROS-RIOS
Affiliation:
Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, Texas 76203, USA
A. ALVAREZ
Affiliation:
Estación Experimental de Aula Dei, EEAD-CSIC, Apdo, 202, 50059, Zaragoza, España
R. A. MALVAR
Affiliation:
CSIC-Misión Biológica de Galicia, Apartado 28, 36080, Pontevedra, España
*
*To whom all correspondence should be addressed. Email: [email protected]

Summary

The direct response of a divergent selection programme for total cell wall ester-linked diferulate concentration in maize pith stalk tissues and its indirect effect on cell wall degradability and corn borer resistance have been previously evaluated. Since increased total diferulate concentration is expected to improve crop performance in response to corn borers, the objective of the present research was to evaluate the indirect response of the divergent selection for diferulates on agronomic traits under corn borer infestation. For this purpose, five maize populations with contrasting total diferulate concentrations were evaluated four environments for performance under protected and infested conditions. Measured traits were: days to anthesis, days to silking, plant height, stalk lodging, grain moisture at harvest and grain yield. High diferulate populations showed a significant reduction in anthesis (precocity), and were 11 cm taller than the starting population, while low diferulate populations were 9 cm shorter, and showed nearly 1 t/ha lower grain yield than the original and high diferulate populations. The analysis showed that cycles of selection were positively correlated with flowering, plant height and grain yield. The infestations with borers produced >1 t/ha of reduction in grain yield; although the higher diferulate populations showed a better performance under infestation than the low diferulate populations. This positive effect on the grain yield by increasing diferulate content can be considered an extra in order to breed for resistance to corn borers.

Type
Crops and Soils Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albrecht, K. A., Martin, M. J., Russel, W. A., Wedin, W. F. & Buxton, D. R. (1986). Chemical and in vitro digestible dry matter composition of maize stalks after selection for stalk strength and stalk rot resistance. Crop Science 26, 10511055.Google Scholar
Allen, M. S., O'Neil, K. A., Main, D. G. & Beck, J. (1991). Relationship among yield and quality traits of corn hybrids for silage. Journal of Dairy Science 74 (Suppl 1), 221.Google Scholar
Barrière, Y., Ralph, J., Mechin, V., Guillaumie, S., Grabber, J. H., Argillier, O., Chabbert, B. & Lapierre, C. (2004). Genetic and molecular basis of grass cell wall biosynthesis and degradability. II. Lessons from brown midrib mutants. Comptes Rendus de Biologie 327, 847860.Google Scholar
Barros-Rios, J., Malvar, R. A., Jung, H. J. G. & Santiago, R. (2011). Cell wall composition as a maize defense mechanism against corn borers. Phytochemistry 72, 365371.Google Scholar
Barros-Rios, J., Malvar, R. A., Jung, H. J. G., Bunzel, M. & Santiago, R. (2012). Divergent selection for ester-linked diferulates in maize pith stalk tissues. Effects on cell wall composition and degradability. Phytochemistry 83, 4350.Google Scholar
Barros-Rios, J., Santiago, R., Jung, H. J. G. & Malvar, R. A. (2013). Effect of cell wall diferuloylation on agronomic fitness and silage quality in maize. In Proceedings of the XIII Cell Wall Meeting 2013, Abstract Book, p. 54. Abstract O6-06. Nantes, France.Google Scholar
Barros-Rios, J., Santiago, R., Jung, H. J. G. & Malvar, R. A. (2015). Covalent cross-linking of cell wall polysaccharides through esterified diferulates as a maize resistance mechanism against corn borers. Journal of Agricultural and Food Chemistry 63, 22062214.Google Scholar
Bergvinson, D. J., Arnason, J. T., Hamilton, R. I., Mihm, J. A. & Jewell, D. C. (1994). Determining leaf toughness and its role in maize resistance to the European corn borer (Lepidoptera: Pyralidae). Journal of Economic Entomology 87, 17431748.CrossRefGoogle Scholar
Bergvinson, D. J., Hamilton, R. I. & Arnason, J. T. (1995). Leaf profile of maize resistance factors to European corn borer, Ostrinia nubilalis . Journal of Chemical Ecology 21, 343354.CrossRefGoogle ScholarPubMed
Bergvinson, D. J., Arnason, J. T. & Hamilton, R. I. (1997). Phytochemical changes during recurrent selection for resistance to the European corn borer. Crop Science 37, 15671572.Google Scholar
Brookes, G. (2009). The Existing and Potential Impact of using GM Insect Resistant (GM IR) Maize in the European Union. Dorchester, UK: PG Economics. Available from: http://www.pgeconomics.co.uk/pdf/btmaizeeuropejune2009.pdf (verified 9 October 2015).Google Scholar
Butrón, A., Malvar, R. A., Velasco, P., Vales, M. I. & Ordas, A. (1999). Combining abilities for maize stem antibiosis, yield loss, and yield under infestation and non-infestation with pink stem borer. Crop Science 39, 691696.Google Scholar
Butrón, A., Romay, M. C., Peña-Asin, J., Alvarez, A. & Malvar, R. A. (2012). Genetic relationship between maize resistance to corn borer attack and yield. Crop Science 52, 11761180.Google Scholar
Butrón, A., Samayoa, F., Santiago, R. & Malvar, R. A. (2014). Selection efficiency of tunnel length and stalk breakage to obtain maize inbred lines resistant to stem borer attack. Euphytica 197, 295302.Google Scholar
Casler, M. D. (2005). Agricultural fitness of smooth bromegrass populations selected for divergent fiber concentration. Crop Science 45, 3643.Google Scholar
Casler, M. D. & van Santen, E. (2010). Breeding objectives in forages. In Fodder Crops and Amenity Grasses (Eds Boller, B., Posselt, U. K. & Veronesi, F.), pp. 115136. Handbook of Plant Breeding Vol. 5. New York: Springer.Google Scholar
Cherry, A. J., Lomer, C. J., Djegui, D. & Schulthess, F. (1999). Pathogen incidence and their potential as microbial control agents in IPM of maize stem borers in West Africa. Biocontrol 44, 301327.Google Scholar
Cirilo, A. G. & Andrade, F. H. (1994). Sowing date and maize productivity: II. Kernel number determination. Crop Science 34, 10441046.Google Scholar
Eizaguirre, M. & Albajes, R. (1992). Diapause induction in the stem corn borer, Sesamia nonagrioides (Lepidoptera: Noctuidae). Entomologia Generalis 17, 277283.Google Scholar
Fry, S. C. (1986). Cross-linking of matrix polymers in the growing cell walls of angiosperms. Annual Review of Plant Physiology 37, 165186.Google Scholar
Fry, S. C., Willis, S. C. & Paterson, A. E. J. (2000). Intraprotoplasmic and wall-localised formation of arabinoxylan-bound diferulates and larger ferulate coupling-products in maize cell-suspension cultures. Planta 211, 679692.CrossRefGoogle ScholarPubMed
Grabber, J. H., Ralph, J. & Hatfield, R. D. (2000). Cross-linking of maize walls by ferulate dimerization and incorporation into lignin. Journal of Agricultural and Food Chemistry 48, 61066113.Google Scholar
Inoue, N. & Kasuga, S. (1989). Agronomic traits and nutritive value of stover in brown midrib-3 maize hybrids. Grass Science 35, 220227.Google Scholar
Klenke, J. R., Russel, W. A. & Guthrie, W. D. (1986). Recurrent selection for resistance to European corn borer in a corn synthetic and correlated effects on agronomic traits. Crop Science 26, 864868.Google Scholar
Lee, M. H. & Brewbaker, J. L. (1984). Effects of brown midrib-3 on yields and yield components of maize. Crop Science 24, 105108.Google Scholar
Lewis, M. F., Lorenzana, R. E., Jung, H. J. G. & Bernardo, R. (2010). Potential for simultaneous improvement of corn grain yield and stover quality for cellulosic ethanol. Crop Science 50, 516523.Google Scholar
Lourenco, M. E., Anderson, I. C. & Wedin, W. F. (1986). Stover forage quality as affected by stalk strength in maize (Zea mays L.). In Breeding of Silage Maize, Proceedings of 13th Congress of the Maize and Sorghum Section, EUCARPIA (Eds Dolstra, O. & Miedema, P.), pp. 101106. Wageningen, The Netherlands: PUDOC.Google Scholar
Marita, J. M., Vermerris, W., Ralph, J. & Hatfield, R. D. (2003). Variations in the cell wall composition of maize brown midrib mutants. Journal of Agricultural and Food Chemistry 51, 13131321.Google Scholar
Meissle, M., Romeis, J. & Bigler, F. (2011). Bt maize and integrated pest management: a European perspective. Pest Management Science 67, 10491058.Google Scholar
Miller, J. E., Geadelmann, J. L. & Marten, G. C. (1983). Effect of the brown-midrib allele on maize silage quality and yield. Crop Science 23, 493496.Google Scholar
Ordás, B., Butrón, A., Alvarez, A., Revilla, P. & Malvar, R. A. (2012). Comparison of two methods of reciprocal recurrent selection in maize (Zea mays L.). Theoretical and Applied Genetics 124, 11831191.Google Scholar
Pedersen, J. F., Vogel, K. P. & Funnell, D. L. (2005). Impact of reduced lignin on plant fitness. Crop Science 45, 812819.Google Scholar
Ramputh, A. I. (2002). Soluble and cell wall bound phenolic-mediated insect resistance in corn and sorghum. Ph.D. Thesis, Ottawa-Carleton Institute of Biology, Ontario, Canada.Google Scholar
Russell, W. A., Lawrence, G. D. & Guthrie, W. D. (1979). Effects of recurrent selection for European corn borer resistance on other agronomic characters in synthetic cultivars of corn. Maydica 24, 3347.Google Scholar
Samayoa, L. F., Butrón, A. & Malvar, R. A. (2014). QTL mapping for maize resistance and yield under infestation with Sesamia nonagrioides . Molecular Breeding 34, 13311344.Google Scholar
Sandoya, G., Butrón, A., Alvarez, A., Ordas, A. & Malvar, R. A. (2008). Direct response of a maize synthetic to recurrent selection for resistance to stem borers. Crop Science 48, 113118.Google Scholar
Sandoya, G., Butrón, A., Santiago, R., Alvarez, A. & Malvar, R. A. (2010). Indirect response to selection for improving resistance to the Mediterranean corn borer (Sesamia nonagrioides Lef) in maize. Euphytica 172, 231237.Google Scholar
Santiago, R. & Malvar, R. A. (2010). Role of dehydrodiferulates in maize resistance to pests and diseases. International Journal of Molecular Science 11, 691703.Google Scholar
Santiago, R., Butrón, A., Arnason, J. T., Reid, L. M., Souto, X. C. & Malvar, R. A. (2006). Putative role of pith cell wall phenylpropanoids in Sesamia nonagrioides (Lepidoptera: Noctuidae) resistance. Journal of Agricultural and Food Chemistry 54, 22742279.Google Scholar
Santiago, R., Sandoya, G., Butrón, A., Barros, J. & Malvar, R. A. (2008). Changes in phenolic concentrations during recurrent selection for resistance to the Mediterranean corn borer (Sesamia nonagrioides Lef.). Journal of Agricultural and Food Chemistry 56, 80178022.Google Scholar
Santiago, R., Barros-Rios, J. & Malvar, R. A. (2013 a). Impact of cell wall composition on maize resistance to pests and diseases. International Journal of Molecular Science 14, 69606980.Google Scholar
Santiago, R., Cao, A., Malvar, R. A. & Butrón, A. (2013 b). Is it possible to control fumonisin contamination in maize kernels by using genotypes resistant to the Mediterranean Corn Borer? Journal of Economic Entomology 106, 22412246.Google Scholar
SAS Institute (2007). The SAS System. SAS Online Doc HTML Format, Version 8. Cary, NC: SAS Institute Inc.Google Scholar
Saulnier, L., Crepeau, M. J., Lahaye, M., Thibault, J. F., Garcia-Conesa, M. T., Kroon, P. A. & Williamson, G. (1999). Isolation and structural determination of two 5, 5′-diferuloyl oligosaccharides indicate that maize heteroxylans are covalently cross-linked by oxidatively coupled ferulates. Carbohydrate Research 320, 8292.Google Scholar
Troyer, A. F. (1996). Breeding widely adapted, popular maize hybrids. Euphytica 92, 163174.Google Scholar
Vattikonda, M. R. & Hunter, R. B. (1983). Comparison of grain yield and whole-plant silage production of recommended corn hybrids. Canadian Journal of Plant Science 63, 601609.Google Scholar
Velasco, P., Revilla, P., Monetti, L., Butrón, A. M., Ordas, A. & Malvar, R. A. (2007). Corn borers (Lepidoptera: Noctuidae; Crambidae) in northwestern Spain: population dynamics and distribution. Maydica 52, 195203.Google Scholar
Vermerris, W. & McIntyre, L. M. (1999). Time to flowering in brown midrib mutants of maize: an alternative approach to the analysis of developmental traits. Heredity 83, 171178.Google Scholar
Vermerris, W., Thompson, K. J. & McIntyre, L. M. (2002). The maize Brown midrib 1 locus affects cell wall composition and plant development in a dose-dependent manner. Heredity 88, 450457.Google Scholar
Vignols, F., Rigau, J., Torres, M. A., Capellades, M. & Puigdomenech, P. (1995). The brown-midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyl transferase. Plant Cell 7, 407416.Google Scholar
Weller, R. F., Phipps, R. H. & Cooper, A. (1985). The effect of the brown midrib-3 gene on the maturity and yield of forage maize. Grass and Forage Science 40, 335339.Google Scholar
Wolf, D. P., Coors, J. G., Albrecht, K. A., Undersander, D. J. & Carter, P. R. (1993). Agronomic evaluations of maize genotypes selected for extreme fiber concentrations. Crop Science 33, 13591365.Google Scholar
Zadoks, J. C., Chang, T. T. & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research 14, 415421.Google Scholar