Published online by Cambridge University Press: 09 March 2004
Sprouted potato tubers lose nutritional value, and their increased content of reducing sugar renders them unsuitable for the french fry and chipping industries. Thus, tuber sprouting in storage is a primary concern of the potato industry, and is currently controlled by application of chemical sprout suppressants. Such suppressants are subject to widespread regulation by governmental agencies. The present study was initiated to investigate the role of the plant hormone ethylene in potato (Solanum tuberosum L.) tuber dormancy release. To this end, potato cv. ‘Russet Burbank’ was transformed with ETR1, an ethylene receptor gene from Arabidopsis. The resulting clones were genetically characterized to verify integration and expression of the ETR1 mRNA and protein. Transgenic clones showed developmental and morphologic changes in plant and tuber, and differing responses to environmental stress and pathogen attack relative to untransformed controls. Lengthening of dormancy was also observed in ETR1 antisense clones stored at 4 °C. Transgenic potato clones treated with solutions of silver thiosulfate (STS), an ethylene action inhibitor, showed restoration of normal plant morphology, while controls were unaffected. These results demonstrate the pleiotrophic effects of ethylene in potato, and identify a need for additional studies on the relationship between ethylene and tuber dormancy.