Published online by Cambridge University Press: 20 January 2017
We investigated the potential for an invasive sea lavender, Limonium ramosissimum subsp. provinciale (Algerian sea lavender; LIRA) to spread in San Francisco Estuary (SFE) tidal marshes by testing how two determinants of tidal marsh plant distribution, salinity and inundation, affect LIRA dispersal, germination, growth, and reproduction. Simulating dispersal in 0, 15, and 30 parts per thousand (ppt) salinity water, we found seeds remained afloat similarly regardless of salinity, and seed viability after floatation was high (88%); however, seeds in 0 ppt aquaria germinated after just 4 d, suggesting shorter dispersal distances in fresh than in brackish or saline water. Next, we compared LIRA and native halophyte seed germination in 0, 15, 30, and 45 ppt water. Percentage of germination was similar between species after 3 wk, but LIRA germinated faster in fresh water than all native species (90% vs. 5% germination after 4 d), suggesting a possible establishment advantage for LIRA at low salinities. Finally, we grew LIRA under crossed salinity and inundation levels in a tidal simulator for a growing season. LIRA growth and seed production increased when either salinity or inundation was reduced. We conclude that spread could be greatest among salt marshes due to high potential for seed dispersal in saline water, yet spread within marshes may be greatest in relatively lower salinity conditions where growth and reproduction are maximized.
Current address of first author: Restoration Ecologist, H. T. Harvey & Associates, 983 University Avenue Building D, Los Gatos, CA 95032