Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T03:09:08.188Z Has data issue: false hasContentIssue false

Molecular Genetic and Hybridization Studies of Diorhabda spp. Released for Biological Control of Tamarix

Published online by Cambridge University Press:  20 January 2017

Dan W. Bean*
Affiliation:
Palisade Insectary, Colorado Department of Agriculture, 750 37.8 Road, Palisade, CO 81526
David J. Kazmer
Affiliation:
Northern Plains Agricultural Research Laboratory, U.S. Department of Agriculture Agricultural Research Service (USDA ARS), 1500 North Central Avenue, Sidney, MT 59270
Kevin Gardner
Affiliation:
Department of Entomology, Plant Pathology, and Weed Science, New Mexico State University, 945 College Avenue, N141, Las Cruces, NM 88003
David C. Thompson
Affiliation:
New Mexico State University Agricultural Experiment Station, P.O. Box 30003, MSC 3BF, Las Cruces, NM 88003
Beth (Petersen) Reynolds
Affiliation:
Department of Entomology, Plant Pathology, and Weed Science, New Mexico State University, 945 College Avenue, N141, Las Cruces, NM 88003
Julie C. Keller
Affiliation:
Western Regional Research Center, USDA ARS, 800 Buchanan Street, Albany, CA 94710
John F. Gaskin
Affiliation:
Northern Plains Agricultural Research Laboratory, U.S. Department of Agriculture Agricultural Research Service (USDA ARS), 1500 North Central Avenue, Sidney, MT 59270
*
Corresponding author's E-mail: [email protected]

Abstract

The genus Diorhabda (Coleoptera: Chrysomelidae) was recently revised, using morphological characters, into five tamarisk-feeding species, four of which have been used in the tamarisk (Tamarix spp.) biological control program in North America and are the subject of these studies. The taxonomic revision is here supported using molecular genetic and hybridization studies. Four Diorhabda species separated into five clades using cytochrome c oxidase subunit 1 sequence data with Diorhabda elongata separating into two clades. Amplified fragment length polymorphism (AFLP) analysis using genomic DNA revealed only four clades, which corresponded to the four morphospecies. Hybridization between the four species yielded viable eggs in F1 crosses but viability was significantly lower than achieved with intraspecific crosses. Crosses involving Diorhabda carinulata and the other three species resulted in low F2 egg viability, whereas crosses between D. elongata, Diorhabda sublineata and Diorhabda carinata resulted in > 40% F2 egg viability. Crosses between D. carinulata and the other three species resulted in high mortality of D. carinulata females due to genital mismatch. AFLP patterns combined with principal coordinates analysis enabled effective separation between D. elongata and D. sublineata, providing a method to measure genetic introgression in the field.

Type
Reviews
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Department of Sociology, University of Wisconsin, Madison, 8128 Social Sciences, 1180 Observatory Drive, Madison, WI 53706

References

Literature Cited

Ballard, J. W. O. and Whitlock, M. C. 2004. The incomplete natural history of mitochondria. Mol. Ecol. 13 :729744.Google Scholar
Barton, N. H. 2001. The role of hybridization in evolution. Mol. Ecol. 10 :551568.Google Scholar
Bean, D. W., Dudley, T. L., and Keller, J. C. 2007a. Seasonal timing of diapause induction limits the effective range of Diorhabda elongata deserticola (Coleoptera: Chrysomelidae) as a biological control agent for tamarisk (Tamarix spp.) Environ. Entomol. 36 :1525.Google Scholar
Bean, D. W., Wang, T., Bartelt, R. J., and Zilkowski, B. W. 2007b. Diapause in the leaf beetle Diorhabda elongata (Coleoptera: Chrysomelidae), a biological control agent for tamarisk (Tamarix spp.). Environ. Entomol. 36 :531540.Google Scholar
Brouat, C., Meusnier, S., Veyrier, R., and Streiff, R. 2006. Haldane's rule in Carabus: interspecific mating between Carabus punctatoauratus and Carabus splendens using experimental tests and molecular markers. Entomol. Exp. Appl. 120 :189194.Google Scholar
Carruthers, R. I., DeLoach, C. J., Herr, J. C., Anderson, G. L., and Knutson, A. E. 2008. Saltcedar areawide pest management in the western United States. Pages 252279 in Koul, O., Cuperus, G., and Elliott, N., eds. Areawide Pest Management: Theory and Implementation. Wallingford, UK : CAB International.Google Scholar
Cossé, A. A., Bartelt, R. J., Zilkowski, B. W., Bean, D. W., and Petroski, R. J. 2005. The aggregation pheromone of Diorhabda elongata, a biological control agent of saltcedar (Tamarix spp.): identification of two behaviorally active components. J. Chem. Ecol. 31 :657670.Google Scholar
Dalin, P., Bean, D. W., Dudley, T., Carney, V., Eberts, D., Gardner, K. T., Hebertson, E., Jones, E. N., Kazmer, D. J., Michels, G. J., O'Meara, S. A., and Thompson, D. C. 2010. Seasonal adaptations to day length in ecotypes of Diorhabda spp. (Coleoptera: Chrysomelidae) inform selection of agents against saltcedars (Tamarix spp.). Environ. Entomol. 39 :16661675.Google Scholar
Dalin, P., O'Neal, M. J., Dudley, T., and Bean, D. W. 2009. Host plant quality of Tamarix ramosissima and T. parviflora for three sibling species of the biocontrol insect Diorhabda elongata (Coleoptera: Chrysomelidae). Environ. Entomol. 38 :13731378.Google Scholar
DeLoach, C. J., Carruthers, R., Dudley, T., Eberts, D., Kazmer, D., Knutson, A., Bean, D., Knight, J., Lewis, P., Tracy, J., Herr, J., Abbot, G., Prestwich, S., Adams, G., Mityaev, I., Jashenko, R., Li, B., Sobhian, R., Kirk, A., Robbins, T., and Delfosse, E. 2004. First results for control of saltcedar (Tamarix spp.) in the open field in the western United States. Pages 505513 in Cullen, J., ed. Eleventh International Symposium on Biological Control of Weeds. CSIRO Entomology, Canberra, Australia.Google Scholar
DeLoach, C. J., Lewis, P. A., Herr, J. C., Carruthers, R. I., Tracy, J. L., and Johnson, J. 2003. Host specificity of the leaf beetle, Diorhabda elongata deserticola (Coleoptera: Chrysomelidae) from Asia, a biocontrol agent for saltcedars (Tamarix: Tamaricaceae) in the western United States. Biol. Control 27 :117147.Google Scholar
Dudley, T. L., Dalin, P., and Bean, D. W. 2006. Status of biological control of Tamarix spp. in California. Pages 137140 in Hoddle, M. S., and Johnson, M. W., eds. Proceedings of the Fifth California Conference on Biological Control. University of California, Riverside, CA.Google Scholar
Friedman, J. M., Rolle, J. E., Gaskin, J. F., Pepper, A. E., and Manhart, J. R. 2008. Latitudinal variation in cold hardiness in introduced Tamarix and native Populus . Evol. Appl. 1 :598607.Google Scholar
Gaskin, J. F. and Kazmer, D. J. 2009. Introgression between invasive saltcedars (Tamarix chinensis and T. ramosissima) in the USA. Biol. Invasions 11 :1121–130.Google Scholar
Gaskin, J. F. and Schaal, B. A. 2002. Hybrid Tamarix widespread in US and undetected in native Asian range. Proc. Natl. Acad. Sci. U. S. A. 99 :1125611259.Google Scholar
Gaskin, J. F. and Schaal, B. A. 2003. Molecular phylogenetic investigation of U.S. invasive Tamarix. Syst. Bot. 28 :8695.Google Scholar
Gatto, L., Mardulyn, P., and Pasteels, J. M. 2008. Morphological and mitochondrial DNA analyses indicate the presence of a hybrid zone between two species of leaf beetle (Coleoptera; Chrysomelidae) in southern Spain. Biol. J. Linn. Soc. 94 :105114.Google Scholar
Gröning, J. and Hochkirch, A. 2008. Reproductive interference between animal species. Q. Rev. Biol. 83 :257282.Google Scholar
Herr, J. H., Carruthers, R. I., Bean, D. W., DeLoach, C. J., and Kashefi, J. 2009. Host preference between saltcedar (Tamarix spp.) and native non-target Frankenia spp. within the Diorhabda elongata species complex (Coleoptera: Chrysomelidae). Biol. Control 51 :337345.Google Scholar
Herrera, A. M. 2003. Temperature-dependent development and field survival of Diorhabda elongata (Coleoptera: Chrysomelidae) a biological control agent introduced to control saltcedar (Tamarix spp.). M.S. thesis. Berkeley, CA: University of California, Berkeley, 100 p.Google Scholar
Kazmer, D. J., Hopper, K. R., Coutinot, D. M., and Heckel, D. G. 1995. Suitability of random amplified polymorphic DNA for genetic markers in the aphid parasitoid, Aphelinus asychis Walker. Biol. Control 5 :503512.Google Scholar
Lewis, P. A., DeLoach, C. J., Knutson, A. E., Tracy, J. L., and Robbins, T. O. 2003. Biology of Diorhabda elongata deserticola (Coleoptera: Chrysomelidae), an Asian leafbeetle for biological control of saltcedars (Tamarix spp.) in the United States. Biol. Control 27 :101116.Google Scholar
Madeira, P. T., Hale, R. E., Center, T. D., Buckingham, G. R., Wineriter, S. A., and Purcell, M. 2001. Whether to release Oxyops vitiosa from a second Australian site into Florida's Melaleuca? A molecular approach. BioControl 46 :511528.Google Scholar
Madeira, P. T., Tipping, P. W., Gandolfo, D. E., Center, T. D., Van, T. K., and O'Brien, C. W. 2006. Molecular and morphological examination of Cyrtobagous sp. collected from Argentina, Paraguay, Brazil, Australia, and Florida. BioControl 51 :679701.Google Scholar
Milbrath, L. R. and DeLoach, C. J. 2006a. Host specificity of different populations of the leaf beetle Diorhabda elongata (Coleoptera: Chrysomelidae), a biological control agent of saltcedar (Tamarix spp.). Biol. Control 36 :3248.Google Scholar
Milbrath, L. R. and DeLoach, C. J. 2006b. Acceptability and suitability of athel, Tamarix aphylla, to the leaf beetle Diorhabda elongata (Coleoptera: Chrysomelidae), a biological control agent of saltcedar (Tamarix spp.). Environ. Entomol. 35 :13791389.Google Scholar
Milbrath, L. R., DeLoach, C. J., and Tracy, J. L. 2007. Overwintering survival, phenology, voltinism, and reproduction among different populations of the leaf beetle Diorhabda elongata (Coleoptera: Chrysomelidae). Environ. Entomol. 36 :13561364.Google Scholar
Moore, W. S. 1995. Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees. Evolution 49 :718726.Google Scholar
Nagata, N., Kubota, K., Yahiro, K., K. and Sota, T. 2007. Mechanical barriers to introgressive hybridization revealed by mitochondrial introgression patterns in Ohomopterus ground beetle assemblages. Mol. Ecol. 16 :48224836.Google Scholar
Nei, M. and Li, W. H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76 :52695273.Google Scholar
Papa, R., Troggio, M., Ajmone-Marsan, P., and Nonnis Marzano, F. 2005. An improved protocol for the production of AFLP markers in complex genomes by means of capillary electrophoresis. J. Anim. Breed. Genet. 122 :6268.Google Scholar
Petersen, B. A. 2007. Variability in population dynamics between mixed populations of Chinese and Greek saltcedar leaf beetle ecotypes. M.S. Thesis. Las Cruces, NM: New Mexico State University. 82.Google Scholar
Peterson, M. A., Honchak, B. M., Locke, S. E., Beeman, T. E., Mendoza, J., Green, J., Buckingham, K. J., White, M. A., and Monsen, K. J. 2005. Relative abundance and the species-specific reinforcement of male mating preference in the Chrysochus (Coleoptera: Chrysomelidae) hybrid zone. Evolution 59 :26392655.Google Scholar
Rauth, S. J., Hinz, H. L., Gerber, E., and Hufbauer, R. A. 2011. The benefits of pre-release population genetics: a case study using Ceutorhynchus scrobicollis, a candidate agent of garlic mustard, Alliaria petiolata . Biol. Control 56 :6775.Google Scholar
Riley, E. G., Clark, S. M., and Seeno, T. N. 2003. Catalog of the Leaf Beetles of America North of Mexico (Coleoptera: Megalopodidae, Orsodacnidae and Chrysomelidae, Excluding Bruchinae). Sacramento, CA : Coleopterists Society. 290 p.Google Scholar
Rubinoff, D. and Holland, B. S. 2005. Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Syst. Biol. 54 :952961.Google Scholar
Seehausen, O. 2004. Hybridization and adaptive radiation. Trends Ecol. Evol. 19 :198207.Google Scholar
Shafroth, P. B., Cleverly, J. R., Dudley, T. L., Taylor, J. P., Van Riper, C. V., Weeks, E. P., and Stuart, J. N. 2005. Control of Tamarix in the western United States: implications for water salvage, wildlife use, and riparian restoration. Environ. Manag. 35 :231246.Google Scholar
Shapiro, A. M. and Porter, A. H. 1989. The lock and key hypothesis: evolutionary and biosystematic interpretation of insect genitalia. Ann. Rev. Entomol. 34 :231245.Google Scholar
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. 1994. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87 :651701.Google Scholar
Sota, T. 2002. Radiation and reticulation: extensive introgressive hybridization in the carabid beetles Ohomopterus inferred from mitochondrial gene genealogy. Popul. Ecol. 44 :145156.Google Scholar
Sota, T. and Kubota, K. 1998. Genital lock-and-key as a selective agent against hybridization. Evolution 52 :15071513.Google Scholar
Sota, T. and Vogler, A. P. 2001. Incongruence of mitochondrial and nuclear gene trees in the carabid beetle Ohomopterus . Syst. Biol. 50 :3959.Google Scholar
Streiff, R., Veyrier, R., Audiot, P., Meusnier, S., and Brouat, C. 2005. Introgression in natural populations of bioindicators: a case study of Carabus splendens and Carabus punctatoauratus . Mol. Ecol. 14 :37753786.Google Scholar
Thomas, H. Q., Zalom, F. T., and Roush, R. T. 2009. Laboratory and field evidence of post-release changes to the ecological host range of Diorhabda elongata: has this improved biological control efficacy? Biol. Control 53 :353359.Google Scholar
Tracy, J. T. and Robbins, T. O. 2009. Taxonomic revision and biogeography of the Tamarix-feeding Diorhabda elongata (Brullé, 1832) species group (Coleoptera: Chrysomelidae: Galerucinae: Galerucini) and analysis of their potential in biological control of tamarisk. Zootaxa 2101 :1152.Google Scholar
Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., and Zabeau, M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23 :44074414.Google Scholar