Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-22T16:15:04.612Z Has data issue: false hasContentIssue false

Gone but Not Forgotten? Invasive Plants' Legacies on Community and Ecosystem Properties

Published online by Cambridge University Press:  20 January 2017

Jeffrey D. Corbin*
Affiliation:
Department of Biological Sciences, Union College, Schenectady, NY 12308
Carla M. D'Antonio
Affiliation:
Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106
*
Corresponding author's E-mail: [email protected]

Abstract

The widespread recognition that nonnative plants can have significant biological and economic effects on the habitats they invade has led to a variety of strategies to remove them. Removal alone, however, is often not sufficient to allow the restoration of altered communities or ecosystems. The invasive plant's effects may persist after its removal thus exerting a “legacy” that influences community composition or the ecosystem properties or both over some ensuing period. Here, we review evidence of such legacy effects on plant and soil communities, soil chemistry, and soil physical structure. We discuss this evidence in the context of efforts to restore community composition and ecosystem function in invaded habitats. Legacies are especially likely to develop in cases where invasive species cause local extirpations of resident species, alter resource pools, and interact with other aspects of global change including land-use changes, atmospheric N deposition, acid rain, and climate change. In cases where legacies of invasive plants develop, the removal of the nonnative species must also be accompanied by strategies to overcome the legacies if restoration goals are to be achieved.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anttila, C. K., Daehler, C. C., Rank, N. E., and Strong, D. R. 1998. Greater male fitness of a rare invader (Spartina alterniflora, Poaceae) threatens a common native (Spartina foliosa) with hybridization. Am. J. Bot. 85:15971601.Google Scholar
Ayres, D. R., Zaremba, K., and Strong, D. R. 2004. Extinction of a common native species by hybridization with an invasive congener. Weed Technol. 18:12881291.Google Scholar
Bleeker, W., Schmitz, U., and Ristow, M. 2007. Interspecific hybridization between alien and native plant species in Germany and its consequences for native biodiversity. Biol. Conserv. 137:248253.Google Scholar
Buisson, E., Anderson, S., Holl, K. D., Corcket, E., Hayes, G. F., Peeters, A., and Dutoit, T. 2008. Reintroduction of Nassella pulchra to California coastal grasslands: effects of topsoil removal, plant neighbour removal and grazing. Appl. Veg. Sci. 11:195204.Google Scholar
Bunn, S. E., Davies, P. M., Kellaway, D. M., and Prosser, I. P. 1998. Influence of invasive macrophytes on channel morphology and hydrology in an open tropical lowland stream, and potential control by riparian shading. Freshw. Biol. 39:171178.Google Scholar
Choi, Y. D. and Pavlovic, N. B. 1998. Experimental restoration of native vegetation in Indiana Dunes National Lakeshore. Restor. Ecol. 6:118129.Google Scholar
Cione, N. K., Padgett, P. E., and Allen, E. B. 2002. Restoration of a native shrubland impacted by exotic grasses, frequent fire, and nitrogen deposition in Southern California. Restor. Ecol. 10:376384.Google Scholar
Clements, F. E. 1916. Plant Succession: An Analysis of the Development of Vegetation. Washington, DC Carnegie Institution of Washington. 512 p.Google Scholar
Connell, J. H. and Slatyer, R. O. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111:11191144.Google Scholar
Conser, C. and Connor, E. 2009. Assessing the residual effects of Carpobrotus edulis invasion, implications for restoration. Biol. Invasions 11:349358.Google Scholar
Corbin, J. D. and D'Antonio, C. M. 2004. Effects of exotic species on soil nitrogen cycling: implications for restoration. Weed Technol. 18:14641467.Google Scholar
Corbin, J. D., D'Antonio, C. M., and Bainbridge, S. J. 2004. Tipping the balance in the restoration of plants: experimental approaches to changing the exotic ∶ native ratio in California grassland. Pages 154179 in Gordon, M. S., and Bartol, S. M., eds. Experimental Approaches to Conservation Biology. Berkeley, CA University of California Press.Google Scholar
Cronk, Q. C. B. and Fuller, J. L. 1995. Plant Invaders: The Threat to Natural Ecosystems. 1st ed. London, New York Chapman & Hall. 241 p.Google Scholar
Crooks, J. A. 2002. Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97:153166.Google Scholar
D'Antonio, C. M. 1990. Invasion and Dominance of Coastal Plant Communities by the Introduced Succulent, Carpobrotus edulis. Ph.D Dissertation. Santa Barbara, CA University of California. 212 p.Google Scholar
D'Antonio, C. M. and Meyerson, L. A. 2002. Exotic plant species as problems and solutions in ecological restoration: a synthesis. Restor. Ecol. 10:703713.Google Scholar
D'Antonio, C. M. and Vitousek, P. M. 1992. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu. Rev. Ecol. Syst. 23:6387.Google Scholar
Daehler, C. C. and Strong, D. R. 1996. Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USA. Biol. Conserv 78:5158.Google Scholar
Davis, M. 2003. Biotic globalization: does competition from introduced species threaten biodiversity? Bioscience 53:481489.Google Scholar
Del Moral, R. and Bliss, L. 1993. Mechanisms of primary succession: Insights from the eruption of Mount St Helens. Pages 166 in Begon, M., and Fitter, A. H., eds. Advances in Ecological Research. San Diego, CA Academic.Google Scholar
DiVittorio, C. T., Corbin, J. D., and D'Antonio, C. M. 2007. Spatial and temporal patterns of seed dispersal: an important determinant of grassland invasion. Ecol. Appl. 17:311316.Google Scholar
Ehrenfeld, J. G. 2010. Ecosystem consequences of biological invasions. Annu. Rev. Ecol. Evol. Syst. 41:5980.Google Scholar
Enright, W. D. 2000. The effect of terrestrial invasive alien plants on water scarcity in South Africa. Phys. Chem. Earth Pt. B Hydrol. Oceans Atmos. 25:237242.Google Scholar
Grman, E. and Suding, K. N. 2010. Within-year soil legacies contribute to strong priority effects of exotics on native California grassland communities. Restor. Ecol. 18:664670.Google Scholar
Gurevitch, J. and Padilla, D. K. 2004. Are invasive species a major cause of extinctions? Trends Ecol. Evol. 19:470474.Google Scholar
Hacker, S. D. and Dethier, M. N. 2009. Differing consequences of removing ecosystem-modifying invaders: significance of impact and community context to restoration potential. Biol. Invasions Mar. Ecosyst. 375385.Google Scholar
Hamilton, J. G., Holzapfel, C., and Mahall, B. E. 1999. Coexistence and interference between a native perennial grass and non-native annual grasses in California. Oecologia 121:518526.Google Scholar
Haubensak, K., D'Antonio, C. M., and Alexander, J. 2004. Effects of nitrogen-fixing shrubs in Washington and coastal California. Weed Technol. 18:14751479.Google Scholar
Hawkes, C. V., Belnap, J., D'Antonio, C., and Firestone, M. K. 2006. Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses. Plant Soil 281:369380.Google Scholar
Heleno, R., Lacerda, I., Ramos, J. A., and Memmott, J. 2010. Evaluation of restoration effectiveness: community response to the removal of alien plants. Ecol. Appl. 20:11911203.Google Scholar
Hobbs, R. J., Arico, S., Aronson, J., et al. 2006. Novel ecosystems: theoretical and management aspects of the new ecological world order. Global Ecol. Biogeogr. 15:17.Google Scholar
Hobbs, R. J., Higgs, E., and Harris, J. A. 2009. Novel ecosystems: implications for conservation and restoration. Trends Ecol. Evol. 24:599605.Google Scholar
Holsman, K. K., McDonald, P. S., Barreyro, P. A., and Armstrong, D. A. 2010. Restoration through eradication? removal of an invasive bioengineer restores some habitat function for a native predator. Ecol. Appl. 20:22492262.Google Scholar
Jones, C. G., Lawton, J. H., and Shachak, M. 1994. Organisms as ecosystem engineers. Oikos 69:373386.Google Scholar
Klironomos, J. N. 2002. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:6770.Google Scholar
Kourtev, P. S., Ehrenfeld, J. G., and Häggblom, M. 2002. Exotic plant species alter the microbial community structure and function in the soil. Ecology 83:31523166.Google Scholar
Lacey, J. R., Clayton, B. M., and Lane, J. R. 1989. Influence of spotted knapweed (Centaurea maculosa) on surface runoff and sediment yield. Weed Technol. 3:627631.Google Scholar
Ladenburger, C. G., Hild, A. L., Kazmer, D. J., and Munn, L. C. 2006. Soil salinity patterns in tamarix invasions in the Bighorn Basin, Wyoming, USA. J. Arid Environ. 65:111128.Google Scholar
Lesica, P. and DeLuca, T. 2004. Is tamarisk allelopathic? Plant Soil 267:357365.Google Scholar
Levine, J. M., Vilà, M., Antonio, C. M. D., Dukes, J. S., Grigulis, K., and Lavorel, S. 2003. Mechanisms underlying the impacts of exotic plant invasions. Proc. R. Soc. Lond. B Biol. Sci. 270:775781.Google Scholar
Liao, C. Z., Peng, R. H., Luo, Y. Q., Zhou, X. H., Wu, X. W., Fang, C. M., Chen, J. K., and Li, B. 2008. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol. 177:706714.Google Scholar
Malcolm, G. M., Bush, D. S., and Rice, S. K. 2008. Soil nitrogen conditions approach preinvasion levels following restoration of nitrogen-fixing black locust (Robinia pseudoacacia) stands in a pine–oak ecosystem. Restor. Ecol. 16:7078.Google Scholar
Maron, J. and Connors, P. 1996. A native nitrogen-fixing shrub facilitates weed invasion. Oecologia 105:302312.Google Scholar
Maron, J. L. and Jefferies, R. L. 1999. Bush lupine mortality, altered resource availability, and alternative vegetation states. Ecology 80:443454.Google Scholar
Maron, J. L. and Jefferies, R. L. 2001. Restoring enriched grasslands: effects of mowing on species richness, productivity, and nitrogen retention. Ecol. Appl. 11:10881100.Google Scholar
Martin, L. M. and Wilsey, B. J. 2006. Assessing grassland restoration success: relative roles of seed additions and native ungulate activities. J. Appl. Ecol. 43:10981109.Google Scholar
Meyerson, L., Viola, D., and Brown, R. 2010. Hybridization of invasive Phragmites australis with a native subspecies in North America. Biol. Invasions 12:103111.Google Scholar
Molinari, N., D'Antonio, C., and Thomson, G. 2007. Carpobrotus as a case study of the complexities of species impacts. Theoretical Ecology Series 4:139162.Google Scholar
Mummey, D. and Rillig, M. 2006. The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field. Plant Soil 288:8190.Google Scholar
Mummey, D. L., Rillig, M. C., and Holben, W. E. 2005. Neighboring plant influences on arbuscular mycorrhizal fungal community composition as assessed by T-RFLP analysis. Plant Soil 271:8390.Google Scholar
Olden, J. D., LeRoy Poff, N., Douglas, M. R., Douglas, M. E., and Fausch, K. D. 2004. Ecological and evolutionary consequences of biotic homogenization. Trends Ecol. Evol. 19:1824.Google Scholar
Patten, K. and O'Casey, C. 2007. Use of Willapa Bay, Washington, by shorebirds and waterfowl after Spartina control efforts. J. Field Ornithol. 78:395400.Google Scholar
Perry, L., Blumenthal, D., Monaco, T., Paschke, M., and Redente, E. 2010. Immobilizing nitrogen to control plant invasion. Oecologia 163:1324.Google Scholar
Pickart, A. J., Miller, L. M., and Duebendorfer, T. E. 1998. Yellow bush lupine invasion in northern California coastal dunes I: ecological impacts and manual restoration techniques. Restor. Ecol. 6:5968.Google Scholar
Pimentel, D., Zuniga, R., and Morrison, D. 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. 52:273288.Google Scholar
Pringle, A., Bever, J. D., Gardes, M., Parrent, J. L., Rillig, M. C., and Klironomos, J. N. 2009. Mycorrhizal symbioses and plant invasions. Annu. Rev. Ecol. Evol. Syst. 40:699715.Google Scholar
Reeder, T. and Hacker, S. 2004. Factors contributing to the removal of a marine grass invader (Spartina anglica) and subsequent potential for habitat restoration. Estuaries 27:244252.Google Scholar
Reinhart, K. O. and Callaway, R. M. 2006. Soil biota and invasive plants. New Phytol. 170:445457.Google Scholar
Rey Benayas, J. M., Newton, A. C., Diaz, A., and Bullock, J. M. 2009. Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325:11211124.Google Scholar
Rice, S., Westerman, B., and Federici, R. 2004. Impacts of the exotic, nitrogen-fixing black locust (Robinia pseudoacacia) on nitrogen-cycling in a pine–oak ecosystem. Plant Ecol. 174:97107.Google Scholar
Richter, B. S. and Stutz, J. C. 2002. Mycorrhizal inoculation of big sacaton: implications for grassland restoration of abandoned agricultural fields. Restor. Ecol. 10:607616.Google Scholar
Sakai, A. K., Allendorf, F. W., Holt, J. S., et al. 2001. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32:305332.Google Scholar
Sax, D. F. and Gaines, S. D. 2008. Species invasions and extinction: the future of native biodiversity on islands. Proc. Natl. Acad. Sci. U. S. A. 105:1149011497.Google Scholar
Seabloom, E. W., Borer, E. T., Boucher, V. L., Burton, R. S., Cottingham, K. L., Goldwasser, L., Gram, W. K., Kendall, B. E., and Micheli, F. 2003. Competition, seed limitation, disturbance, and reestablishment of California native annual forbs. Ecol. Appl. 13:575592.Google Scholar
Seastedt, T. R., Hobbs, R. J., and Suding, K. N. 2008. Management of novel ecosystems: are novel approaches required? Front Ecol. Environ. 6:547553.Google Scholar
Sheley, R. L. and Krueger-Mangold, J. 2003. Principles for restoring invasive plant-infested rangeland. Weed Sci. 51:260265.Google Scholar
Simberloff, D. 2001. Eradication of island invasives: practical actions and results achieved. Trends Ecol. Evol. 16:273274.Google Scholar
Stinson, K. A., Campbell, S. A., Powell, J. R., Wolfe, B. E., Callaway, R. M., Thelen, G. C., Hallett, S. G., Prati, D., and Klironomos, J. N. 2006. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol 4:e140. DOI: 10.1371/journal.pbio.0040140Google Scholar
Stock, W. D., Wienand, K. T., and Baker, A. C. 1995. Impacts of invading N-2- fixing Acacia species on patterns of nutrient cycling in 2 Cape ecosystems—evidence from soil incubation studies and N-15 natural-abundance values. Oecologia 101:375382.Google Scholar
Suding, K. N., Gross, K. L., and Houseman, G. R. 2004. Alternative states and positive feedbacks in restoration ecology. Trends Ecol. Evol. 19:4653.Google Scholar
Thompson, J. D. 1991. The biology of an invasive plant. Bioscience 41:393401.Google Scholar
van der Heijden, M. G. A., Klironomos, J. N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A., and Sanders, I. R. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:6972.Google Scholar
Van der Putten, W. H., Van Dijk, C., and Peters, B. A. M. 1993. Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature 362:5356.Google Scholar
Vander Zanden, M. J., Casselman, J. M., and Rasmussen, J. B. 1999. Stable isotope evidence for the food web consequences of species invasions in lakes. Nature 401:464467.Google Scholar
Vilà, M., Weber, E., and Antonio, C. M. D. 2000. Conservation implications of invasion by plant hybridization. Biol. Invasions 2:207217.Google Scholar
Vitousek, P., Matson, P., and Cleve, K. 1989. Nitrogen availability and nitrification during succession: primary, secondary, and old-field seres. Plant Soil 115:229239.Google Scholar
Vitousek, P. M. and Walker, L. R. 1989. Biological invasion by Myrica faya in Hawai'i: plant demographics, nitrogen fixation, ecosystem effects. Ecol. Monogr. 59:247265.Google Scholar
Vitousek, P. M., Walker, L. R., Whiteaker, L. D., Mueller-Dombois, D., and Matson, P. A. 1987. Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238:802804.Google Scholar
Vivrette, N. J. and Muller, C. H. 1977. Mechanism of invasion and dominance of coastal grassland by Mesembryanthemum crystallinum . Ecol. Monogr. 47:301318.Google Scholar
Wiedemann, A. M. and Pickart, A. 1996. The Ammophila problem on the Northwest coast of North America. Landsc. Urban Plann. 34:287299.Google Scholar
Wilcove, D. S., Rothstein, D., Jason, D., Phillips, A., and Losos, E. 1998. Quantifying threats to imperiled species in the United States. Bioscience 48:607615.Google Scholar
Wolfe, B. E. and Klironomos, J. N. 2005. Breaking new ground: soil communities and exotic plant invasion. Bioscience 55:477487.Google Scholar
Zubek, S., Turnau, K., Tsimilli-Michael, M., and Strasser, R. 2009. Response of endangered plant species to inoculation with arbuscular mycorrhizal fungi and soil bacteria. Mycorrhiza 19:113123.Google Scholar