Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:13:21.809Z Has data issue: false hasContentIssue false

Ecology and Impacts of the Large-Statured Invasive Grasses Arundo donax and Phragmites australis in North America

Published online by Cambridge University Press:  20 January 2017

Adam M. Lambert*
Affiliation:
Marine Science Institute, University of California, Santa Barbara, CA 93106
Tom L. Dudley
Affiliation:
Marine Science Institute, University of California, Santa Barbara, CA 93106
Kristin Saltonstall
Affiliation:
Smithsonian Tropical Research Institute, Apartado 0843-03092, Panamá, Republic of Panamá
*
Corresponding author's E-mail: [email protected]

Abstract

Large-statured invasive grasses (LSIGs) constitute a distinct functional group with characteristic life history traits that facilitate colonization and aggressive growth in aquatic ecosystems, particularly those modified by human activities. These species typically form monocultures in the systems they invade and have wide-ranging and negative impacts on biodiversity and ecosystem processes. In March 2008, a special symposium was held as part of the Western Society of Weed Scientists annual meeting to synthesize our current knowledge of the ecological impacts and management of two notorious LSIGs: Arundo donax and Phragmites australis. In this volume of Invasive Plant Science and Management, symposium participants provide articles summarizing existing knowledge, recent research progress, and research needs for these two taxa. Here, we summarize the basic biology of these species and suggest the use of a more holistic approach to deal with the effects and management of LSIG invasions.

Type
Symposium
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Able, K. W. and Ragan, S. M. 2003. Impact of common reed, Phragmites australis, on essential fish habitat: influence on reproduction, embryological development, and larval abundance of mummichog (Fundulus heteroclitus). Estuaries 26:4050.CrossRefGoogle Scholar
Aronson, R. B., Thatje, S., Clarke, A., Peck, L. S., Blake, D. B., Wilga, C. D., and Seibel, B. A. 2007. Climate change and invasibility of the Antarctic Benthos. Ann. Rev. Ecol. Evol. S 38:129154.CrossRefGoogle Scholar
Barney, J. N. and DiTomaso, J. M. 2008. Nonnative species and bioenergy: are we cultivating the next invader? Bioscience 58:6470.CrossRefGoogle Scholar
Bell, G. P. 1997. Ecology and management of Arundo donax, and approaches to riparian habitat restoration in southern California. Pages 103113. In Brock, J. H., Wade, M., Pysêk, P., and Green, D. eds. Plant Invasions: Studies from North America and Europe. Leiden, The Netherlands Backhuys.Google Scholar
Benoit, L. K. and Askins, R. A. 1999. Impact of the spread of Phragmites on the distribution of birds in Connecticut tidal marshes. Wetlands 19:194208.CrossRefGoogle Scholar
Blossey, B. 2003. A framework for evaluating potential ecological effects of implementing biological control of Phragmites australis . Estuaries 26:607617.CrossRefGoogle Scholar
Boose, A. B. and Holt, J. S. 1999. Environmental effects on asexual reproduction in Arundo donax . Weed Res 39:117127.CrossRefGoogle Scholar
Brisson, J., de Blois, S., and Levoie, C. 2010. Roadsides as invasion pathway for common reed (Phragmites australis). Invas Plant Sci. Manag 3:506514.CrossRefGoogle Scholar
Cal-IPC 2006. California Invasive Plant Inventory. Berkeley, CA California Invasive Plant Council Publication 2006-02. http://www.cal-ipc.org. Accessed: August 25, 2010.Google Scholar
Chambers, R. M., Meyerson, L. A., and Saltonstall, K. 1999. Expansion of Phragmites australis into tidal wetlands of North America. Aquat. Bot 64:261273.CrossRefGoogle Scholar
Coffman, G. C. 2007. Factors influencing invasion of giant reed (Arundo donax) in riparian ecosystems of Mediterranean-type climate regions. Ph.D dissertation. Los Angeles, CA: University of California. 282 p.Google Scholar
Decruyenaere, J. and Holt, J. 2005. Ramet demography of a clonal invader, Arundo donax (Poaceae), in Southern California. Plant Soil 277:4152.CrossRefGoogle Scholar
Dudley, T. and Collins, B. 1995. Biological Invasions in California Wetlands: The Impacts and Control of Non-indigenous Species in Natural Areas. Oakland, CA Pacific Institute for SIDES.Google Scholar
Dudley, T. L. 2000. Arundo donax L. Pages. 5358. in. Invasive Plants of California's Wildlands. Berkeley, CA University of California Press.Google Scholar
Dudley, T. L., Lambert, A. M., Kirk, A., and Tamagawa, Y. 2008. Herbivores of Arundo donax in California. Pages. 146152. in. Proceedings of the XII International Symposium on Biological Control of Weeds. Wallingford, UK CAB International.Google Scholar
Else, J. 1996. Post-flood establishment of native woody species and an exotic, Arundo donax, in a southern California riparian system. Master's thesis. San Diego, CA: San Diego State University.Google Scholar
Gitay, H. and Noble, I. R. 1997. What are functional types and how should we seek them?. Pages 318. In Smith, T. M., Shugart, H. H., and Woodward, F. I. eds. Plant Functional Types: Their Relevance to Ecosystem Properties and Global Change. New York Cambridge University Press.Google Scholar
Goolsby, J. A. and Moran, P. 2009. Host range of Tetramesa romana Walker (Hymenoptera: Eurytomidae), a potential biological control of giant reed, Arundo donax L. in North America. Biol. Control 49:160168.CrossRefGoogle Scholar
Grime, J. P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat 111:1169.CrossRefGoogle Scholar
Grime, J. P. 1979. Plant Strategies and Vegetation Processes. New York John Wiley and Sons. 222 p.Google Scholar
Haslam, S. M. 1972. Biological flora of the British Isles: Phragmites communis Trin. J. Ecol 60:585610.CrossRefGoogle Scholar
Herrera, A. M. and Dudley, T. L. 2003. Reduction of riparian arthropod abundance and diversity as a consequence of giant reed (Arundo donax) invasion. Biol. Invas 5:167177.CrossRefGoogle Scholar
Hershner, C. and Havens, K. J. 2008. Managing invasive aquatic plants in a changing system: strategic considerations of ecosystem services. Conserv. Biol 22:544550.CrossRefGoogle Scholar
Kisner, D. A. 2004. The Effect of Giant Reed (Arundo donax) on the Southern California Riparian Bird Community. M.S. Thesis. San Diego, CA: San Diego State University. 90 p.Google Scholar
Lavorel, S., Díaz, S., Cornelissen, J., et al. 2007. Plant functional types: are we getting any closer to the holy grail?. Pages. 149164. in. Terrestrial Ecosystems in a Changing World. Berlin Springer.CrossRefGoogle Scholar
Mack, R. N. 2008. Evaluating the credits and debits of a proposed biofuel species: giant reed (Arundo donax). Weed Sci 56:883888.CrossRefGoogle Scholar
Marks, M., Lapin, B., and Randall, J. 1994. Phragmites australis (P. communis): Threats, management, and monitoring. Nat. Area J 14:285294.Google Scholar
Mathieu, R., David, M. R., Jeanne, L. N., David, C. L. M., Benis, E., and Theresa, M. 2004. Mapping the potential ranges of major plant invaders in South Africa, Lesotho and Swaziland using climatic suitability. Divers. Distrib 10:475484.Google Scholar
Menke, S. B., Fisher, R. N., Jetz, W., and Holway, D. A. 2007. Biotic and abiotic controls of Argentine ant invasion success at local and landscape scales. Ecology 88:31643173.CrossRefGoogle ScholarPubMed
Menke, S. B. and Holway, D. A. 2006. Abiotic factors control invasion by Argentine ants at the community scale. J. Anim. Ecol 75:368376.CrossRefGoogle ScholarPubMed
Meyerson, L. A., Lambert, A. M., and Saltonstall, K. 2010. Three invasion fronts of Phragmites australis in North America: research and management needs in the face of common Reed expansion in the West and Gulf Regions. Invasive Plant Sci. Manage 3:515520.CrossRefGoogle Scholar
Moore, G. W., Watts, D. A., and Goolsby, J. A. 2010. Ecophysiological responses of giant reed (Arundo donax) to herbivory. Invas. Plant Sci. Manage 3:521529.CrossRefGoogle Scholar
Moran, P. J. and Goolsby, J. A. 2009. Biology of the galling wasp Tetramesa romana, a biological control agent of giant reed. Biol. Control 49:169179.CrossRefGoogle Scholar
Newsome, A. E. and Noble, I. R. 1986. Ecological and physiological characters of invading species. Pages 120. In Groves, R. H. and Burdon, J. J. eds. Ecology of Biological Invasions: An Australian Perspective. Cambridge, UK Cambridge University Press.Google Scholar
Papazoglou, E. G. 2007. Arundo donax L. stress tolerance under irrigation with heavy metal aqueous solutions. Desalination 211:304313.CrossRefGoogle Scholar
Polunin, O. and Huxley, A. 1987. Flowers of the Mediterranean. London Hogarth Press. 260 p.Google Scholar
Pyšek, P. and Richardson, D. M. 2007. Traits associated with invasiveness in alien plants: where do we stand?. Pages 97125. In Caldwell, M. M., Heldmaier, G., Jackson, R. B., Lange, O. L., Schulze, E. D., and Sommer, U. eds. Biological Invasions. Berlin Springer.CrossRefGoogle Scholar
Quinn, L. and Holt, J. 2008. Ecological correlates of invasion by Arundo donax in three southern California riparian habitats. Biol. Invasions 10:591601.CrossRefGoogle Scholar
Quinn, L. D., Rauterkus, M. A., and Holt, J. S. 2007. Effects of nitrogen enrichment and competition on growth and spread of giant reed (Arundo donax). Weed Sci 55:319326.CrossRefGoogle Scholar
Rejmanek, M. and Richardson, D. M. 1996. What attributes make some plant species more invasive? Ecology 77:16551661.CrossRefGoogle Scholar
Richardson, D. M. and Van Wilgen, B. W. 2004. Invasive alien plants in South Africa: how well do we understand the ecological impacts? S. Afr. J. Sci 100:4552.Google Scholar
Rickey, M. A. and Anderson, R. C. 2004. Effects of nitrogen addition on the invasive grass Phragmites australis and a native competitor Spartina pectinata . J. Appl. Ecol 41:888896.CrossRefGoogle Scholar
Rooth, J. E., Stevenson, J. C., and Cornwell, J. C. 2003. Increased sediment accretion rates following invasion by Phragmites australis: the role of Litter. Estuaries 26:475483.CrossRefGoogle Scholar
Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc. Natl. Acad. Sci. USA 99:24452449.CrossRefGoogle ScholarPubMed
Saltonstall, K. and Hauber, D. P. 2007. Notes on Phragmites australis (Poaceae: Arundinoideae) in North America. J. Bot. Res. Inst. Texas 1:385388.Google Scholar
Saltonstall, K., Lambert, A. M., and Meyerson, L. A. 2010. Genetics and reproduction of common (Phragmites australis) and giant reed (Arundo donax). Invas. Plant Sci. Manage 3:495505.CrossRefGoogle Scholar
Saltonstall, K., Peterson, P. M., and Soreng, R. J. 2004. Recognition of Phragmites australis subsp. americanus (Poaceae: Arundinoideae) in North America: evidence from morphological and genetic analyses. SIDA Contrib. Bot 21:683692.Google Scholar
Seca, A. M. L., Cavaleiro, J. A. S., Domingues, F. M. J., Silvestre, A. J. D., Evtuguin, D., and Neto, C. P. 2000. Structural characterization of the lignin from the nodes and internodes of Arundo donax Reed. J. Agric. Food Chem 48:817824.CrossRefGoogle ScholarPubMed
Smith, M. D. and Knapp, A. K. 2001. Physiological and morphological traits of exotic, invasive exotic, and native plant species in tallgrass prairie. Int. J Plant Sci 162 (4):785792.CrossRefGoogle Scholar
Tecco, P., Díaz, S., Cabido, M., and Urcelay, C. 2010. Functional traits of alien plants across contrasting climatic and land-use regimes: do aliens join the locals or try harder than them? J. Ecol 98:1727.CrossRefGoogle Scholar
Tucker, G. C. 1990. The genera of Arundinoideae (Gramineae) in the southeastern United States. J. Arnold Arbor 71:145177.CrossRefGoogle Scholar
[USDA] U.S. Department of Agriculture 2010. Natural Resources Conservation Service PLANTS database. http://plants.usda.gov. Accessed August 25, 2010.Google Scholar
Weber, E. 2003. Invasive plant species of the world: a reference guide to environmental weeds. Wallingford CAB International Publishing. 560 p.Google Scholar
Windham, L. and Meyerson, L. A. 2003. Effects of common reed (Phragmites australis) expansions on nitrogen dynamics of tidal marshes of the northeastern U.S. Estuar 26:452464.CrossRefGoogle Scholar