Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T02:39:36.675Z Has data issue: false hasContentIssue false

Do Woody Plants Prevent the Establishment of Common Reed along Highways? Insights from Southern Quebec

Published online by Cambridge University Press:  20 January 2017

Arnaud Albert
Affiliation:
Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 East Sherbrooke St., Montreal, Quebec (QC) H1X 2B2, Canada
Jacques Brisson
Affiliation:
Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 East Sherbrooke St., Montreal, Quebec (QC) H1X 2B2, Canada
Jean Dubé
Affiliation:
Département Sociétés, Territoires et Développement, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Quebec (QC) G5L 3A1, Canada
Claude Lavoie*
Affiliation:
École Supérieure d'Aménagement du Territoire et de Développement Régional, Université Laval, Quebec City, Quebec (QC) G1A 0V6, Canada
*
Corresponding author's E-mail: [email protected]

Abstract

The common reed (Phragmites australis) is one of the most invasive vascular plants in northeastern North America. A competitive genotype from Eurasia has recently invaded road and agricultural ditches, which facilitate the dispersal of the plant over long distances. However, large tracts of roadsides—apparently propitious for the establishment of the plant—are not invaded by the grass. We hypothesized that the absence of the invader is associated with physical and biological characteristics of roadsides. To test this hypothesis, we collected field data and developed two statistical models to explain the presence or absence of the common reed along a highway of southern Quebec highly invaded by the plant but with contrasting patterns of common reed distribution. The models explained 23 to 30% of the total variance and correctly predicted the presence or absence of common reed 71% of the time. The models suggest that a dense woody plant cover over a drainage ditch limits the establishment and/or expansion of the common reed, probably by competition for light and space. Also, shaded ditches are not subjected to a frequent maintenance, and are therefore less disturbed, probably further reducing common reed invasion because the germination of their seeds is less likely without soil disturbance. This study yields insights on the potential of woody plants for controlling the expansion of invasive grasses, and could help to justify the preservation of dense shrubs and tree hedges along right-of-ways.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anselin, L. 2006. GeoDa: an introduction to spatial data analysis. Geogr. Anal. 38:522.Google Scholar
Barrett, S. C. H. 2011. Reproductive systems, plant. Pages 584590 in Simberloff, D. and Rejmánek, M., eds. Encyclopedia of Biological Invasions. Berkeley and Los Angeles University of California Press.Google Scholar
Belzile, F., Labbé, J., LeBlanc, M.-C., and Lavoie, C. 2010. Seeds contribute strongly to the spread of the invasive genotype of the common reed (Phragmites australis). Biol. Invasions 12:22432250.Google Scholar
Bertness, M. D., Ewanchuk, P. J., and Silliman, B. R. 2002. Anthropogenic modification of New England salt marsh landscapes. Proc. Natl. Acad. Sci. U. S. A. 99:13951398.Google Scholar
Boivin, P., Albert, A., and Brisson, J. 2011. Prévenir et Contrôler l'Envahissement des Autoroutes par le Roseau Commun (Phragmites australis). Montreal, Quebec (QC) Institut de Recherche en Biologie Végétale. 39 p.Google Scholar
Bouchard, A. and Domon, G. 1997. The transformations of the natural landscapes of the Haut-Saint-Laurent (Québec) and their implications on future resource management. Landsc. Urban Plann. 37:99107.Google Scholar
Boyoucos, G. J. 1962. Hydrometer method improved for making particle-size analysis of soils. Agron. J. 54:464465.Google Scholar
Brisson, J., de Blois, S., and Lavoie, C. 2010. Roadside as invasion pathway for common reed (Phragmites australis). Invasive Plant Sci. Manag. 3:506514.Google Scholar
Brisson, J., Paradis, É., and Bellavance, M-È. 2008. Evidence of sexual reproduction in the invasive common reed (Phragmites australis subsp. australis; Poaceae) in eastern Canada: a possible consequence of global warming? Rhodora 110:225230.Google Scholar
Cameron, A. C. and Triverdi, P. K. 2009. Microeconometrics Using Stata. College Station, TX Stata Press. 688 p.Google Scholar
Catling, P. M. and Mitrow, G. 2011. The recent spread and potential distribution of Phragmites australis subsp. australis in Canada. Can. Field-Nat. 125:95104.Google Scholar
Christen, D. C. and Matlack, G. R. 2009. The habitat and conduit functions of roads in the spread of three invasive plant species. Biol. Invasions 11:453465.Google Scholar
Domon, G. and Bouchard, A. 2007. The landscape history of Godmanchester (Quebec, Canada): two centuries of shifting relationships between anthropic and biophysical factors. Landsc. Ecol. 22:12011214.Google Scholar
Floerl, O. and Inglis, G. J. 2005. Starting the invasion pathway: the interaction between source populations and human transport vectors. Biol. Invasions 7:589606.Google Scholar
Foster, R. D. and Wetzel, P. R. 2005. Invading monotypic stands of Phalaris arundinacea: a test of fire, herbicide, and woody and herbaceous native plant groups. Restor. Ecol. 13:318324.Google Scholar
Gelbard, J. L. and Belnap, J. 2003. Roads as conduits for exotic plant invasions in a semiarid landscape. Conserv. Biol. 17:420432.Google Scholar
Hansen, M. J. and Clevenger, A. P. 2005. The influence of disturbance and habitat on the presence of non-native plant species along transport corridors. Biol. Conserv. 125:249259.Google Scholar
Haslam, S. M. 1972. Phragmites communis Trin. (Arundo phragmites L., Phragmites australis (Cav.) Trin. ex Steudel). J. Ecol. 60:585610.Google Scholar
Havens, K. J., Berquist, H. B., and Priest, W. I. III. 2003. Common reed grass, Phragmites australis, expansion into constructed wetlands: are we mortgaging our wetland future? Estuaries 26:417422.Google Scholar
Hosmer, D. W. and Lemeshow, S. 2000. Applied Logistic Regression. 2nd ed. New York J. Wiley. 373 p.Google Scholar
Hudon, C., Gagnon, P., and Jean, M. 2005. Hydrological factors controlling the spread of common reed (Phragmites australis) in the St. Lawrence River (Québec, Canada). Écoscience 12:347357.Google Scholar
Hulme, P. E. 2003. Biological invasions: winning the science battles but losing the conservation war? Oryx 37:178193.Google Scholar
Hulme, P. E. 2009. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46:1018.Google Scholar
Hulme, P. E., Bacher, S., Kenis, M., Klotz, S., Kühn, I., Minchin, D., Nentwig, W., Olenin, S., Panov, V., Pergl, J., Pyšek, P., Roques, A., Sol, D., Solarz, W., and Vilà, M. 2008. Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J. Appl. Ecol. 45:403414.Google Scholar
Jodoin, Y., Lavoie, C., Villeneuve, P., Thériault, M., Beaulieu, J., and Belzile, F. 2008. Highways as corridors and habitats for the invasive common reed Phragmites australis in Quebec, Canada. J. Appl. Ecol. 45:459466.Google Scholar
Joly, M., Bertrand, P., Gbangou, R. Y., White, M.-C., Dubé, J., and Lavoie, C. 2011. Paving the way for invasive species: road types and the spread of common ragweed (Ambrosia artemisiifolia). Environ. Manag. 48:514522.Google Scholar
Karim, M. N. and Mallik, A. U. 2008. Roadside revegetation by native plants. I. Roadside microhabitats, floristic zonation and species traits. Ecol. Eng. 32:222237.Google Scholar
Kim, K. D., Ewing, K., and Giblin, D. E. 2006. Controlling Phalaris arundinacea (reed canarygrass) with live willow stakes: a density-dependent response. Ecol. Eng. 27:219227.Google Scholar
Kirk, H., Paul, J., Straka, J., and Freeland, J. R. 2011. Long-distance dispersal and high genetic diversity are implicated in the invasive spread of the common reed, Phragmites australis (Poaceae), in northeastern North America. Am. J. Bot. 98:11801190.Google Scholar
Lathrop, R. G., Windham, L., and Montesano, P. 2003. Does Phragmites expansion alter the structure and function of marsh landscapes? Patterns and processes revisited. Estuaries 26:423435.Google Scholar
Lelong, B., Lavoie, C., Jodoin, Y., and Belzile, F. 2007. Expansion pathways of the exotic common reed (Phragmites australis): a historical and genetic analysis. Divers. Distrib. 13:430437.Google Scholar
Lelong, B., Lavoie, C., and Thériault, M. 2009. Quels sont les facteurs qui facilitent l'implantation du roseau commun (Phragmites australis) le long des routes du sud du Québec? Écoscience 16:224237.Google Scholar
Maheu-Giroux, M. and de Blois, S. 2007. Landscape ecology of Phragmites australis invasion in a network of linear wetlands. Landsc. Ecol. 22:285301.Google Scholar
Mal, T. K. and Narine, L. 2004. The biology of Canadian weeds. 129. Phragmites australis (Cav.) Trin. ex Steud. Can. J. Plant Sci. 84:365396.Google Scholar
McFadden, D. 1974. The measurement of urban travel demand. J. Public Econometrics. 3:303328.Google Scholar
Meunier, G. and Lavoie, C. 2012. Roads as corridors for invasive plant species: new evidence from smooth bedstraw (Galium mollugo). Invasive Plant Sci. Manag. 5:92100.Google Scholar
Moran, P. 1950. A test for serial independence of residuals. Biometrika 37:178181.Google Scholar
Pan, D., Domon, G., de Blois, S., and Bouchard, A. 1999. Temporal (1958–1993) and spatial patterns of land use changes in Haut-Saint-Laurent (Quebec, Canada) and their relation to landscape physical attributes. Landsc. Ecol. 14:3552.Google Scholar
Philipp, K. R. and Field, R. T. 2005. Phragmites australis expansion in Delaware Bay salt marshes. Ecol. Eng. 25:275291.Google Scholar
Rentch, J. S., Fortney, R. H., Stephenson, S. L., Adams, H. S., Grafton, W. N., and Anderson, J. T. 2005. Vegetation-site relationships of roadside plant communities in West Virginia, USA. J. Appl. Ecol. 42:129138.Google Scholar
Rice, D., Rooth, J., and Stevenson, J. C. 2000. Colonization and expansion of Phragmites australis in upper Chesapeake Bay tidal marshes. Wetlands 20:280299.Google Scholar
Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc. Natl. Acad. Sci. U. S. A. 99:24452449.Google Scholar
Soil Landscapes of Canada Working Group. 2010. Soil landscapes of Canada, version 3.2. Ottawa, Ontario, Canada Agriculture and Agri-Food Canada. Map and database.Google Scholar
StataCorp LP. 2009. Stata 11. College Station, TX StataCorp LP.Google Scholar
Tulbure, M. G. and Johnston, C. A. 2010. Environmental conditions promoting non-native Phragmites australis expansion in Great Lakes coastal wetlands. Wetlands 30:577587.Google Scholar
Tulbure, M. G., Johnston, C. A., and Auger, D. L. 2007. Rapid invasion of a Great Lakes coastal wetland by non-native Phragmites australis and Typha . J. Great Lakes Res. 33(SI3):269279.Google Scholar
Vasquez, E. A., Glenn, E. P., Guntenspergen, G. R., Brown, J. J., and Nelson, S. G. 2006. Salt tolerance and osmotic adjustment of Spartina alterniflora (Poaceae) and the invasive M haplotype of Phragmites australis (Poaceae) along a salinity gradient. Am. J. Bot. 93:17841790.Google Scholar
White, H. 1980. A heteroskedastic-consistent covariance matrix estimator and a direct test of heteroskedasticity. Econometrica 48:817838.Google Scholar
Wilcox, D. A. 2012. Response of wetland vegetation to the post-1986 decrease in Lake St. Clair water levels: seed-bank emergence and beginnings of the Phragmites australis invasion. J. Great Lakes Res. 38:270277.Google Scholar
Wilcox, K. L., Petrie, S. A., Maynard, L. A., and Meyer, S. W. 2003. Historical distribution and abundance of Phragmites australis at Long Point, Lake Erie, Ontario. J. Great Lakes Res. 29:664680.Google Scholar