Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T02:28:36.791Z Has data issue: false hasContentIssue false

DNA Fingerprinting to Improve Data Collection Efficiency and Yield in an Open-Field Host-Specificity Test of a Weed Biological Control Candidate

Published online by Cambridge University Press:  20 January 2017

Brian G. Rector*
Affiliation:
Exotic and Invasive Weeds Research Unit, USDA–ARS, 920 Valley Road, Reno, NV 89512
Alessio De Biase
Affiliation:
Department of Biology and Biotechnology “Charles Darwin,” University of Rome “La Sapienza,” Viale dell'Università 32, 00185 Rome, Italy
Massimo Cristofaro
Affiliation:
BBCA-ENEA, ENEA C.R. Casaccia–BIOTEC, Via Anguillarese 301, 00123 Rome, Italy
Simona Primerano
Affiliation:
Department of Biology and Biotechnology “Charles Darwin,” University of Rome “La Sapienza,” Viale dell'Università 32, 00185 Rome, Italy
Silvia Belvedere
Affiliation:
Department of Biology and Biotechnology “Charles Darwin,” University of Rome “La Sapienza,” Viale dell'Università 32, 00185 Rome, Italy
Gloria Antonini
Affiliation:
Department of Biology and Biotechnology “Charles Darwin,” University of Rome “La Sapienza,” Viale dell'Università 32, 00185 Rome, Italy
Rouhollah Sobhian
Affiliation:
European Biological Control Laboratory, USDA-ARS, Campus International de Baillarguet, Montpellier, France
*
Corresponding author's E-mail: [email protected]

Abstract

An open-field test was conducted in southern France to assess the host-specificity of Ceratapion basicorne (Illiger), a candidate for biological control of yellow starthistle. Test plants were infested by naturally occurring populations of C. basicorne but were also exposed to sympatric herbivore species, including other Ceratapion spp. Insects from the test plants were collected directly into tubes of ethanol and were subsequently identified to species according to DNA sequence similarity with morphologically identified reference specimens. This integrated, morphological and molecular identification method was used in an effort to maximize the amount of data gained in the field bioassay and to minimize the number of taxonomist–hours necessary to complete the study. The results obtained showed that the French C. basicorne population only attacked yellow starthistle and cornflower, another known host of C. basicorne. Molecular phylogenetic analysis of the insects collected from all other nonhost plants rejected the possibility that any were C. basicorne.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alonso-Zarazaga, M. A. 1990. Revision of the sub-genera Ceratapion S. Str. and Echinostroma Nov. of the genus Ceratapion Schilsky, 1901. Fragm. Entomol. Roma 22:399528.Google Scholar
Antonini, G., Audisio, P., De Biase, A., et al. 2008. The importance of molecular tools in classical biological control of weeds: two case studies with yellow starthistle candidate biocontrol agents. Pages 263269. In Julien, M. H., Sforza, R., Bon, M. C., Evans, H. C., Hatcher, P. E., Hinz, H. L., and Rector, B. G. eds. Proceedings of the 12th International Symposium on Biological Control of Weeds. Wallingford, UK CAB.Google Scholar
Antonini, G., Coletti, G., Serrani, L., Tronci, C., Cristofaro, M., and Smith, L. 2009. Using molecular genetics to identify immature specimens of the weevil Ceratapion basicorne (Coleoptera: Apionidae). Biol. Control 51:152157.Google Scholar
Balciunas, J. K. and Korotyaev, B. A. 2007. Larval densities and field hosts of Ceratapion basicorne (Coleoptera: Apionidae) and an illustrated key to the adults of Ceratapion spp. that feed on thistles in the eastern Mediterranean and Black Sea regions. Environ. Entomol 36:14211429.Google Scholar
Bellows, T. S. and Headrick, D. H. 1999. Arthropods and vertebrates in biological control of plants. Pages 505516. In Bellows, T. S. and Fisher, T. W. eds. Handbook of Biological Control. San Diego Academic.Google Scholar
Bisanti, M., Ganassi, S., and Mandrioli, M. 2009. Comparative analysis of various fixative solutions on insect preservation for molecular studies. Entomol. Exp. Appl 130:290296.Google Scholar
Bonfield, J., Beal, K., Jordan, M., Cheng, Y., and Staden, R. 2006. The Staden Package Manual. Cambridge, UK Laboratory of Molecular Biology, Medical Research Council. 496 p.Google Scholar
Clement, S. L., Alonso-Zarazaga, M. A., Mimmochi, T., and Cristofaro, M. 1989. Life history and host range of Ceratapion basicorne (Coleoptera: Apionidae) with notes on other weevil associates (Apioninae) of yellow starthistle in Italy and Greece. Ann. Entomol. Soc. Am 82:741747.Google Scholar
Clement, S. L. and Cristofaro, M. 1995. Open-field tests in host-specificity determination of insects for biological control of weeds. Biocontrol Sci. Technol 5:395406.Google Scholar
Fukatsu, T. 1999. Acetone preservation: a practical technique for molecular analysis. Mol. Ecol 8:19351945.Google Scholar
Fumanal, B., Martin, J-F., and Bon, M-C. 2005. High through-put characterization of insect morphocryptic entities by a non-invasive method using direct-PCR of fecal DNA. J. Biotechnol 119:1519.Google Scholar
Fumanal, B., Martin, J-F., Sobhian, R., Blanchet, A., and Bon, M-C. 2004. Host range of Ceutorhynchus assimilis (Coleoptera: Curculionidae), a candidate for biological control of Lepidium draba (Brassicaceae) in the USA. Biol. Control 30:598607.Google Scholar
Hoy, M. A. 1994. Insect Molecular Genetics: An introduction to Principles and Applications. San Diego Academic. 564 p.Google Scholar
Huelsenbeck, J. P. and Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754755.Google Scholar
Nylander, J. A. A. 2004. MrModeltest v2. Program distributed by the author. Uppsala, Sweden Evolutionary Biology Centre, Uppsala University.Google Scholar
Ratnasingham, S. and Hebert, P. D. N. 2007. Bold: the Barcode of Life Data System (www.barcodinglife.org). Mol. Ecol. Notes 7:355364.Google Scholar
Rauth, S. J. and Hufbauer, R. A. 2009. PCR-RFLP assays for discerning three weevil stem feeders (Ceutorhynchus spp.) (Col.: Curculionidae) on garlic mustard (Alliaria petiolata). Biocontrol Sci. Technol 19:9991005.Google Scholar
Ronquist, F. and Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:15721574.Google Scholar
Ross, H. A., Murugan, S., and Li, W. L. S. 2008. Testing the reliability of genetic methods of species identification via simulation. Syst. Biol 57:216230.Google Scholar
Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol 4:406425.Google Scholar
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am 87:651701.Google Scholar
Smith, L. 2007. Physiological host range of Ceratapion basicorne, a prospective biological control agent of Centaurea solstitialis (Asteraceae), Biol. Control 41:120133.Google Scholar
Smith, L., Cristofaro, M., Tronci, C., and Hayat, R. 2008. Refining methods to improve pre-release risk assessment of prospective agents in the case of Ceratapion basicorne . Pages 321327. In Julien, M. H., Sforza, R., Bon, M. C., Evans, H. C., Hatcher, P. E., Hinz, H. L., and Rector, B. G. eds. Proceedings of the 12th International Symposium on Biological Control of Weeds. Wallingford, UK CAB.Google Scholar
Smith, L. and Drew, A. E. 2006. Fecundity, development, and behavior of Ceratapion basicorne (Coleoptera: Apionidae), a prospective biological control agent of yellow starthistle. Environ. Entomol 35:13661371.Google Scholar
Smith, L., Hayat, R., Cristofaro, M., Tronci, C., Tozlu, G., and Lecce, F. 2006. Assessment of risk of attack to safflower by Ceratapion basicorne (Coleoptera: Apionidae), a prospective biological control agent of Centaurea solstitialis (Asteraceae), Biol. Control 36:337344.Google Scholar
Staden, R., Beal, K. F., and Bonfield, J. K. 2000. The Staden Package, 1998. Methods Mol. Biol 132:115130.Google Scholar
Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol 24:15961599.Google Scholar
Taylor, D. B. and Szalanski, A. L. 1999. Identification of Muscidifurax spp. by polymerase chain reaction–restriction fragment length polymorphism. Biol. Control 15:270273.Google Scholar
Uygur, S., Smith, L., Uygur, F. N., Cristofaro, M., and Balciunas, J. 2005. Field assessment in land of origin of host specificity, infestation rate and impact of Ceratapion basicorne a prospective biological control agent of yellow starthistle. BioControl 50:525541.Google Scholar
Wanat, M. 1995. Systematics and phylogeny of the tribe Ceratapiini (Coleoptera, Curculionoidea, Apionidae). Genus Int. J. Invertebr. Taxon (Suppl. 3):1406.Google Scholar
Wheeler, D. L., Barrett, T., Benson, D. A., et al. 2007. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 35:D5D12.Google Scholar