Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T02:52:00.407Z Has data issue: false hasContentIssue false

Soil Engineering Facilitates Downy Brome (Bromus tectorum) Growth — A Case Study

Published online by Cambridge University Press:  20 January 2017

Robert R. Blank*
Affiliation:
U.S. Department of Agriculture–Agricultural Research Service, Great Basin Rangelands Research Unit, 920 Valley Road, Reno, NV 89512
Tye Morgan
Affiliation:
U.S. Department of Agriculture–Agricultural Research Service, Great Basin Rangelands Research Unit, 920 Valley Road, Reno, NV 89512
*
Corresponding author's E-mail: [email protected]

Abstract

Soil engineering by downy brome may be a facet of its competitiveness. Using rhizotrons in the greenhouse, we compared the growth and plant–soil relationships of downy brome grown in two field soil types: soil invaded for 12 yr by downy brome and a similar soil not yet invaded. For each soil type, downy brome was grown for two growth cycles. At harvest, root mass and soils were sampled at depths of 10, 40, and 80 cm (4, 16, and 32 in); aboveground biomass was also sampled. After the first growth cycle, downy brome grown in invaded soil had 250% greater aboveground biomass and nearly double the root mass per soil volume at 10 cm relative to downy brome grown in noninvaded soil; root mass per volume was similar at depths of 40 and 80 cm. For the second growth cycle, aboveground biomass declined, but was twice greater for downy brome grown in invaded soil; however, root mass per volume was similar between soil types for each depth. Soil attributes that positively related to aboveground biomass included bicarbonate-extractable P, DTPA (diethylentriamene pentaacetate)-extractable Mn, and solution-phase (80-cm depth). We conclude that the data support our hypothesis that downy brome has engineered the soil to increase its growth potential, but proof will require a more robust experimental design. Plant competition is affected by myriad interactions; however, a plant that can increase the availability of soil nutrients for itself and its growth potential, relative to competing plants, would appear to be at an advantage. The mechanistic underpinnings involved are inconclusive, but may involve increased availability of soil N, P, and Mn.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aikio, S., Duncan, R. P., and Hulme, P. E. 2010. Lag-phases in alien plant invasions: separating the facts from the artifacts. Oikos 119:370378.CrossRefGoogle Scholar
Ashley, M. C. and Longland, W. S. 2007. Microsatellite evidence of facultative outcrossing in cheatgrass (Bromus tectorum): implications for the evolution of invasiveness. Plant Species Biol. 22:197204.CrossRefGoogle Scholar
Barrett, S. C. H., Colautti, R. I., and Eckert, C. G. 2008. Plant reproductive systems and evolution during biological invasion. Mol. Ecol. 17:373383.CrossRefGoogle ScholarPubMed
Belnap, J. and Phillips, S. L. 2001. Soil biota in an ungrazed grassland: response to annual grass (Bromus tectorum) invasion. Ecol. Appl. 11:12611275.CrossRefGoogle Scholar
Blank, R. R. 2008. Biogeochemistry of plant invasion: a case study with downy brome (Bromus tectorum L.). Invasive Plant Sci. Manag. 1:226238.CrossRefGoogle Scholar
Blank, R. R. and Morgan, T. 2011. Evidence that invasion by cheatgrass alters soil nitrogen availability, Nat. Resour. Environ. Issues 17:7173.Google Scholar
Blank, R. R., Qualls, R. G., and Young, J. A. 2002. Lepidium latifolium: plant nutrient competition–soil interactions. Biol. Fert. Soils 35:458464.CrossRefGoogle Scholar
Blank, R. R. and Young, J. A. 2004. Influence of three weed species on soil nutrient dynamics. Soil Sci. 169:385397.CrossRefGoogle Scholar
Booth, M. S., Stark, J. M., and Caldwell, M. M. 2003. Inorganic N turnover and availability in annual- and perennial-dominated soils in a northern Utah shrub-steppe ecosystem. Biogeochemistry 66:331–330.CrossRefGoogle Scholar
Brooker, R. W., Maestre, F. T., Callaway, R. M., Lortie, C. L., Cavieres, L. A., Kunstler, G., Liancourt, P., Tielbörger, K., Travis, J.M.J., Anthelme, F., Armas, C., Coll, L., Corcket, E., Delzon, S., Forey, E., Kikvidze, Z., Olofsson, J., Pugnaire, F., Quiroz, C. L., Saccone, P., Schiffers, K., Seifan, M., Touzard, B., and Michalet, R. 2008. Facilitation in plant communities: the past, the present, and the future. J. Ecol. 96:1834.CrossRefGoogle Scholar
Brooks, M. L. 2003. Effects of increased nitrogen on the dominance of alien annual plants in the Mojave Desert. J. Appl. Ecol. 40:344353.CrossRefGoogle Scholar
Bundy, L. G. and Meisinger, J. J. 1994. Nitrogen availability indices. Pages 951984 in Weaver, R. W., Angle, S., Bottomley, P., Bezdicek, D., Smith, S., Tabatabai, A., and Wollum, A., eds. Methods of Soil Analysis, Part 2. Microbiological and Biochemical Properties. Madison, WI Soil Science Society of America.Google Scholar
Chapuis-Lardy, L., Vanderhoeven, S., Dassonville, N., Koutika, L. S., and Meerts, P. 2006. Effect of the exotic invasive plant Solidago gigantean on soil phosphorous status. Biol. Fert. Soils 42:481489.CrossRefGoogle Scholar
Crooks, J. A. 2002. Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97:153166.CrossRefGoogle Scholar
Crooks, J. A. and Soulé, M. E. 1999. Lag times in population explosion of invasive species: causes and implications. Pages 103125 in Sandlund, O. T., Schei, P. J., and Viken, A., eds. Invasive Species and Biodiversity Management. Dordrecht, The Netherlands Kluwer Academic.CrossRefGoogle Scholar
Dakeel, A. J., Radosevich, S. R., and Barbour, M. G. 1993. Effect of nitrogen and phosphorus on growth and interference between Bromus tectorum and Taeniatherum asperum . Weed. Res. 33:415422.CrossRefGoogle Scholar
Dassonville, N., Vanderhoeven, S., Vanparys, V., Hayez, M., Gruber, W., and Meerts, P. 2008. Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe. Oecologia 157:131140.CrossRefGoogle ScholarPubMed
Dietz, H. and Edwards, P. J. 2006. Recognition that causal processes change during plant invasion helps explain conflicts in evidence. Ecology 87:13591367.CrossRefGoogle ScholarPubMed
Ehrenfeld, J. G. 2003. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503523.CrossRefGoogle Scholar
Ellstrand, N. C. and Schierenbeck, K. A. 2000. Hybridization as a stimulus for the evolution of invasiveness in plants? Proc. Natl. Acad. Sci. U. S. A. 97:70437050.CrossRefGoogle ScholarPubMed
Evans, R. D., Rimer, R., Sperry, L., and Belnap, J. 2001. Exotic plant invasion alters nitrogen dynamics in an arid grassland. Ecol. Appl. 11:13011310.CrossRefGoogle Scholar
Gates, D. H., Stoddart, L. A., and Cook, C. W. 1956. Soil as a factor influencing plant distribution on salt-deserts of Utah. Ecol. Monogr. 26:155175.CrossRefGoogle Scholar
Hamilton, E. W. and Frank, D. A. 2001. Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82:23972402.CrossRefGoogle Scholar
Hart, S. C., Stark, J. M., Davidson, E. A., and Firestone, M. K. 1994. Nitrogen mineralization, immobilization, and nitrification. Pages 9851018 in Weaver, R. W., ed. Methods of Soil Analysis, Part 2. Microbiological and Biochemical Properties. Madison, WI Soil Science Society of America.Google Scholar
Hawkes, C. V., Wren, I. F., Herman, D. J., and Firestone, M. K. 2005. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol. Lett. 8:976985.CrossRefGoogle ScholarPubMed
Hinsinger, P. 1998. How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Adv. Agron. 64:225265.CrossRefGoogle Scholar
Huenneke, L. F., Hamburg, S. P., Koide, R., Mooney, H. A., and Vitousek, P. M. 1990. Effects of soil resources on plant invasion and community structure in Californian serpentine grassland. Ecology 71:478491.CrossRefGoogle Scholar
Jobbágy, E. G. and Jackson, R. B. 2001. The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:5177.CrossRefGoogle Scholar
Jones, C. G., Lawton, J. H., and Shachak, M. 1994. Organisms as ecosystem engineers. Oikos 69:373386.CrossRefGoogle Scholar
Jordan, N. R., Larson, D. L., and Huerd, S. C. 2008. Soil modification by invasive plants: effects on native and invasive species of mixed-grass prairies. Biol. Invasions 10:177190.CrossRefGoogle Scholar
Kalra, Y. P. 1997. Handbook of Reference Methods for Plant Analysis. Boca Raton, FL CRC. 300 p.Google Scholar
Kay, B. L. and Evans, R. A. 1965. Effects of fertilization on a mixed stand of cheatgrass and intermediate wheatgrass. J. Range Manag. 18:711.CrossRefGoogle Scholar
Kourtev, P. S., Ehrenfeld, J. G., and Ha, M. 2002. Exotic plant species alter the microbial community structure and function in the soil. Ecology 83:31523166.CrossRefGoogle Scholar
Kowarik, I. 1995. Time lags in biological invasion with regard to the success and failure of alien species. Pages 1538 in Pyšek, P., Prach, K., Rejmánek, K., and Wade, M., eds. Plant Invasions: General Aspects and Special Problems. Champaign, IL Balogh Scientific.Google Scholar
Leger, E. A., Espeland, E. K., Merrill, K. R., and Meyer, S. E. 2009. Genetic variation and local adaptation at a cheatgrass (Bromus tectorum) invasion edge in western Nevada. Mol. Ecol. 18:43664379.CrossRefGoogle Scholar
Levine, J. M., Pachepsky, E., Kendall, B. E., Yelenik, S. G., and Hille Ris Lambers, J. 2006. Plant–soil feedbacks and invasive spread. Ecol. Lett. 9:10051014.CrossRefGoogle ScholarPubMed
Liao, C., Peng, R., Luo, Y., Zhou, X., Wu, X., Fang, C., Chan, J., and Li, B. 2008. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol. 177:706714.CrossRefGoogle ScholarPubMed
Lindsay, W. L. and Norvell, W. A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Amer. J. 42:421428.CrossRefGoogle Scholar
Maron, J. L., Vilà, M. T., Bommarco, R., Elmendorf, S., and Beardsley, P. 2004. Rapid evolution of an invasive plant. Ecol. Monogr. 74:261280.CrossRefGoogle Scholar
Marschner, H. 1995. Mineral Nutrition of Higher Plants. London, UK Academic. 889 p.Google Scholar
Miller, M. E., Belnap, J., Beatty, S. W., and Reynolds, R. L. 2006. Performance of Bromus tectorum L. in relation to soil properties, water addition, and chemical amendments in calcareous soils of southeastern Utah, USA. Plant Soil 288:118.CrossRefGoogle Scholar
Monaco, T. A., Johnson, D. A., Norton, J. M., Jones, T. A., Connors, K. J., Norton, J. B., and Redinbaugh, M. B. 2003. Contrasting responses of intermountain west grasses to soil nitrogen. J. Range Manag. 56:282290.CrossRefGoogle Scholar
Mubarak, A. and Olsen, R. A. 1976. An improved technique for measuring soil pH. Soil Sci. Soc. Amer. J. 40:880882.CrossRefGoogle Scholar
Niu, H., Liu, W., Wan, F., and Liu, B. 2007. An invasive aster (Ageratina adenophora) invades and dominates forest understories in China: altered soil microbial communities facilitate the invader and inhibit natives. Plant Soil 294:7385.CrossRefGoogle Scholar
Olsen, S. R., Cole, C. V., Watanabe, F. S., and Dean, L. A. 1954. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. Washington, D.C. U.S. Department of Agriculture Circular No. 939. 18 p.Google Scholar
Perkins, L., Johnson, D., and Nowak, R. 2011. Plant-induced changes in soil nutrient dynamics by native and invasive grass species. Plant Soil 345:365374.CrossRefGoogle Scholar
Pyšek, P. and Prach, K. 1993. Plant invasions and the role of riparian habitats: a comparison of four species alien to central Europe. J. Biogeogr. 20:413420.CrossRefGoogle Scholar
Reinhart, K. O. and Callaway, R. M. 2006. Soil biota and invasive plants. New Phytol. 170:445457.CrossRefGoogle ScholarPubMed
Rejmánek, M., Richardson, D. M., and Pyšek, P. 2005. Plant invasions and invasibility of plant communities. Pages 332355 in van der Maarel, E., ed. Vegetation Ecology. Oxford, UK Blackwell.Google Scholar
Robertson, G. P. and Groffman, P. M. 2007. Nitrogen transformations. Pages 341364 in Paul, E., ed. Soil Microbiology, Ecology, and Biochemistry. Oxford, UK Elsevier Inc.CrossRefGoogle Scholar
Rout, M. E. and Callaway, R. M. 2009. An invasive plant paradox. Science 324:734735.CrossRefGoogle ScholarPubMed
Sakai, A. K., Allendorf, F. W., Holt, J. S., Lodge, D. M., Molofsky, J., With, K. A., Baughman, S., Cabin, R. J., Cohen, J. E., Ellstrand, N. C., McCauley, D. E., O'Neil, P., Parker, I. M., Thomspon, J. N., and Weller, S. G. 2001. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32:305332.CrossRefGoogle Scholar
Schachtman, D. P., Reid, R. J., and Ayling, S. M. 1998. Phosphorus uptake by plants: from soil to cell. Plant Physiol. 116:447453.CrossRefGoogle ScholarPubMed
Simberloff, D. and Von Holle, B. 1999. Positive interaction of nonindigenous species: invasional meltdown? Biol. Invasions 1:2132.CrossRefGoogle Scholar
Sperry, L. J., Belnap, J., and Evans, R. D. 2006. Bromus tectorum invasion alters nitrogen dynamics in an undisturbed arid grassland ecosystem. Ecology 87:603615.CrossRefGoogle Scholar
Suding, K. N., LeJune, K. D., and Sestedt, T. R. 2004. Competitive impacts and responses of an invasive weed: dependencies on nitrogen and phosphorus availability. Oecologia 141:526535.CrossRefGoogle ScholarPubMed
Thorpe, A. S. and Callaway, R. M. 2006. Interactions between invasive plants and soil ecosystems: positive feedbacks and their potential to persist. Pages 333351 in Cadotte, M. W., McMahon, S. M., and Fukami, T., eds. Conceptual Ecology and Invasions Biology. Dordrecht, The Netherlands Springer.Google Scholar
Wedin, D. A. and Tilman, D. 1990. Species effects on nitrogen cycling: a test with perennial grasses. Oecologia 84:433441.CrossRefGoogle ScholarPubMed