Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T02:58:31.212Z Has data issue: false hasContentIssue false

Invasive Pine Tree Effects on Northern Coastal Scrub Structure and Composition

Published online by Cambridge University Press:  20 January 2017

Robert J. Steers*
Affiliation:
Inventory & Monitoring Program, San Francisco Area Network, National Park Service, Fort Cronkhite Building 1063, Sausalito, CA 94965
Susan L. Fritzke
Affiliation:
Natural Resources Division, Golden Gate National Recreation Area, National Park Service, Fort Cronkhite Building 1061, Sausalito, CA 94965
Jen J. Rogers
Affiliation:
Inventory & Monitoring Program, San Francisco Area Network, National Park Service, Fort Cronkhite Building 1063, Sausalito, CA 94965
James Cartan
Affiliation:
Inventory & Monitoring Program, San Francisco Area Network, National Park Service, Fort Cronkhite Building 1063, Sausalito, CA 94965
Kaitlyn Hacker
Affiliation:
Inventory & Monitoring Program, San Francisco Area Network, National Park Service, Fort Cronkhite Building 1063, Sausalito, CA 94965
*
Corresponding author's E-mail: [email protected]

Abstract

Vegetation that becomes overtopped usually experiences a decrease in abundance or species richness. When an overtopping plant alters the physiognomy of the existing vegetation (e.g., trees invading a shrubland), ecosystem processes can also be dramatically altered. Worldwide, Monterey pine (Pinus radiata) cultivars have been planted in Mediterranean-like climates and are known to invade surrounding natural communities. Ecological impacts resulting from these invasions have been widely investigated; however, the effects from solitary pine trees on the vegetation they overtop are lacking. Furthermore, studies on the impact of P. radiata cultivars from the California floristic province, where P. radiata is native, do not exist. In coastal California, north of the present-day range of native P. radiata stands, cultivars of this species have invaded northern coastal scrub vegetation. To determine the impact of pine invasion on species richness and structure in this habitat, floristic surveys were conducted in 20 blocks that consisted of invaded and uninvaded plots. An invaded plot contained two subplots located under the canopy of an isolated pine tree, whereas a paired, uninvaded plot contained two subplots located in coastal scrub adjacent to each pine. Pine trees selected ranged in size from 2.8 to 119 cm (1.1 to 46.9 in) basal diameter. Our results demonstrate that understory native cover and species richness are negatively correlated with tree size. Understory exotic plant cover and richness of species other than P. radiata did not show any correlation with tree size, mainly because exotic plants had a very low abundance overall.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Deputy Superintendent, East San Francisco Bay National Parks, National Park Service, Danville, CA 94526

References

Literature Cited

Aerts, R. 1999. Interspecific competition in natural plant communities: mechanisms, trade-offs and plant-soil feedbacks. J. Exp. Bot. 50:2937.Google Scholar
Alvarez, M. E. and Cushman, J. H. 2002. Community-level consequences of a plant invasion: effects on three habitats in coastal California. Ecol. Appl. 12:14341444.Google Scholar
Axelrod, D. I. 1981. Holocene climatic changes in relation to vegetation disjunction and speciation. Am. Nat. 117:847870.Google Scholar
Axelrod, D. I. 1982. Age and origin of the Monterey endemic area. Madroño. 29:127147.Google Scholar
Briggs, J. M., Knapp, A. K., Blair, J. M., Heisler, J. L., Hoch, G. A., Lett, M. S., and McCarron, J. K. 2005. An ecosystem in transition: causes and consequences of the conversion of mesic grassland to shrubland. Bioscience 55:243254.Google Scholar
Brockerhoff, E. G., Ecroyd, C. E., Leckie, A. C., and Kimberley, M. O. 2003. Diversity and succession of adventive and indigenous vascular understory plants in Pinus radiata plantation forests in New Zeeland. For. Ecol. Manag. 185:307326.Google Scholar
Brooks, M. L., D'Antonio, C. M., Richardson, D. M., Grace, J. B., Keeley, J. E., DiTomaso, J. M., Hobbs, R. J., Pellant, M., and Pyke, D. 2004. Effects of invasive alien plants on fire regimes. Bioscience 54:677688.Google Scholar
[Cal-IPC] California Invasive Plant Council. 2011. Invasive Plant Profiles: Pinus radiata cultivars (Monterey Pine). http://www.cal-ipc.org/ip/management/plant_profiles/Pinus_radiata_cultivars.php. Accessed: April 5, 2011.Google Scholar
Callaway, R. M. and Davis, F. W. 1993. Vegetation dynamics, fire, and the physical environment in coastal central California. Ecology 74:15671578.Google Scholar
Callaway, R. M. and Davis, F. W. 1998. Recruitment of Quercus agrifolia in central California: the importance of shrub-dominated patches. J. Veg. Sci. 9:647656.Google Scholar
Callaway, R. M., Nadkarni, N. M., and Mahall, B. E. 1991. Facilitation and interference of Quercus douglasii on understory productivity in central California. Ecology 72:14841499.Google Scholar
[CDF] California Department of Forestry. 2010. Pitch Canker Task Force: Identification. ftp://frap.cdf.ca.gov/pub/outgoing/pitch_canker/index.htm. Accessed: March 5, 2010.Google Scholar
[CNPS] California Native Plant Society. 2011. Inventory of Rare and Endangered Plants: Pinus radiata . http://www.rareplants.cnps.org/detail/1378.html. Accessed: May 8, 2011.Google Scholar
Corbin, J. D., Thomsen, M. A., Dawson, T. E., and D'Antonio, C. M. 2005. Summer water use by California coastal prairie grasses: fog, drought, and community composition. Oecologia 45:511521.Google Scholar
Edberg, R. J., Berry, A. M., and Costello, L. R. 1994. Patterns of structural failure in Monterey pine. J. Arboric. 20:297304.Google Scholar
Ford, L. D. and Hayes, G. 2007. Coastal prairie and northern coastal scrub. Pages 180207 in Barbour, M., Keeler-Wolf, T., and Schoenherr, A. A., eds. Terrestrial Vegetation of California. 3rd ed. Berkeley, CA University of California Press.Google Scholar
Forrestel, A. B., Moritz, M. A., and Stephens, S. L. 2011. Landscape-scale vegetation change following fire in Point Reyes, California, USA. Fire Ecol. 7:114128.Google Scholar
Gaertner, M., Den Breeÿen, A., Hui, C., and Richardson, D. M. 2009. Impacts of alien plant invasions on species richness in Mediterranean-type ecosystems: a meta-analysis. Prog. Phys. Geogr. 33:319338.Google Scholar
Grace, J. B. and Tilman, D. 1990. Perspectives on Plant Competition. New York Academic. 484 p.Google Scholar
Grime, J. P. 1979. Plant Strategies and Vegetation Processes. Chichester, UK J. Wiley. 222 p.Google Scholar
Grubb, P. J. 1977. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52:107145.Google Scholar
Gutierrez, J. R., Meserve, P. L., Contreras, L. C., Vasquez, H., and Jaksic, F. M. 1993. Spatial distribution of soil nutrients and ephemeral plants underneath and outside the canopy of Porlieria chilensis shrubs (Zygophyllaceae) in arid coastal Chile. Oecologia 95:347352.Google Scholar
Harvey, B. J., Holzman, B. A., and Davis, J. D. 2011. Spatial variability in stand structure and density-dependent mortality in newly established post-fire stands of a California closed-cone pine forest. For. Ecol. Manag. 262:20422051.Google Scholar
Henderson, S., Dawson, T. P., and Whittaker, R. J. 2006. Progress in invasive plant research. Prog. Phys. Geogr. 30:2546.Google Scholar
Hobbs, R. J. and Mooney, H. A. 1986. Community changes following shrub invasion of grassland. Oecologia 70:508513.Google Scholar
Howard, K. M. and Newton, M. 1984. Overtopping by successional Coast-Range vegetation slows Douglas-fir seedlings. J. For. 82:178180.Google Scholar
Jackson, L. E., Strauss, R. B., Firestone, M. K., and Bartolome, J. W. 1990. Influence of tree canopies on grassland productivity and nitrogen dynamics in deciduous oak savanna. Agric. Ecosyst. Environ. 32:89105.Google Scholar
Lanner, R. M. 1999. Conifers of California. Los Olivos, CA Cachuma. 274 p.Google Scholar
Lazarotti, L. A. 2004. Changes in Vegetation Structure Following Pinus radiata Invasion into Coastal Scrub. M.S. thesis. San Francisco, CA San Francisco State University. 85 p.Google Scholar
Le Maitre, D. C., Van Wilgen, B. W., Chapman, R. A., and McKelly, D. H. 1996. Invasive plants and water resources in the Western Cape Province, South Africa: modeling the consequences of a lack of management. J. Appl. Ecol. 33:161172.Google Scholar
Levine, J. M., Vilá, M., D'Antonio, C. M., Dukes, J. S., Grigulis, K., and Lavorel, S. 2003. Mechanisms underlying the impacts of exotic plant invasion. Proc. R. Soc. Lond. B Biol. Sci. 270:775781.Google Scholar
Lόpez-Pintor, A., Gόmez Sal, A., and Rey Benayas, J. M. 2006. Shrubs as a source of spatial heterogeneity—the case of Retama sphaerocarpa in Mediterranean pastures of central Spain. Acta Oecol. 29:247255.Google Scholar
Mack, R. N., Simberloff, D., Lonsdale, W. M., Evans, H., Clout, M., and Bazzaz, F. A. 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10:689710.Google Scholar
Marañón, T. and Bartolome, J. W. 1993. Reciprocal transplants of herbaceous communities between Quercus agrifolia woodland and adjacent grassland. J. Ecol. 81:673682.Google Scholar
McCune, B. and Mefford, M. J. 2006. PC-ORD: Multivariate Analysis of Ecological Data. Version 5.31. Gleneden Beach, Oregon MjM Software.Google Scholar
Millar, C. I. 1998. Reconsidering the conservation of Monterey pine. Fremontia 26:1216.Google Scholar
Millar, C. I. 1999. Evolution and biogeography of Pinus radiata, with a proposed revision of its quaternary history. N. Z. J. For. Sci. 29:335365.Google Scholar
Millar, C. I., Stephenson, N. L., and Stephens, S. L. 2007. Climate change and forests of the future: managing in the face of uncertainty. Ecol. Appl. 17:21452151.Google Scholar
Miller, R. F., Svejcar, T. J., and Rose, J. A. 2000. Impacts of western juniper on plant community composition and structure. J. Range Manag. 53:574585.Google Scholar
Mittelbach, G. G., Steiner, C. F., Scheiner, S. M., Gross, K. L., Reynolds, H. L., Waide, R. B., Willig, M. R., Dodson, S. I., and Gough, L. 2001. What is the observed relationship between species richness and productivity? Ecology 82:23812396.Google Scholar
Naylor, R. L. 2000. The economics of alien species invasions. Pages 241260 in Mooney, H. A. and Hobbs, R. J., eds. Invasive Species in a Changing World. Washington, DC Island.Google Scholar
[NRCS] Natural Resources Conservation Service. 2010. Web Soil Survey. http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx. Accessed: March 5, 2010.Google Scholar
Ogden, J., Braggins, J., Stretton, K., and Anderson, S. 1997. Plant species richness under Pinus radiata stands on the central north island volcanic plateau, New Zeeland. N. Z. J. Ecol. 21:1729.Google Scholar
Parker, V. T. and Muller, C. H. 1982. Vegetational and environmental changes beneath isolated oak trees (Quercus agrifolia) in a California grassland. Am. Midl. Nat. 107:6981.Google Scholar
Pugnaire, F. I., Armas, C., and Valladares, F. 2004. Soil as a mediator in plant-plant interactions in a semi-arid community. J. Veg. Sci. 15:8592.Google Scholar
Pugnaire, F. I., Haase, P., Puigdefabregas, J., Cueto, M., Clark, S. C., and Incoll, L. D. 1996. Facilitation and succession under the canopy of a leguminous shrub, Retama sphaerocarpa, in a semi-arid environment in south-east Spain. Oikos 76:455464.Google Scholar
Reinhart, K. O., Greene, E., and Callaway, R. M. 2005. Effects of Acer platanoides invasion on understory plant communities and tree regeneration in the Rocky Mountains. Ecography 28:573582.Google Scholar
Rejmánek, M. and Pitcairn, M. J. 2002. When is eradication of exotic plant pests a realistic goal? Pages 249253 in Veitch, C. R. and Clout, M. N., eds. Turning the Tide: The Eradication of Invasive Species. Cambridge, UK IUCN Species Survival Commission 27.Google Scholar
Rejmánek, M. and Richardson, D. M. 1996. What attributes make some plant species more invasive? Ecology 77:16551661.Google Scholar
Rejmánek, M. and Rosén, E. 1992. Influence of colonizing shrubs on species-area relationships in alvar plant communities. J. Veg. Sci. 3:625630.Google Scholar
Richardson, D. M. and Brown, P. J. 1986. Invasion of mesic mountain fynbos by Pinus radiata . S. Afr. J. Bot. 52:529536.Google Scholar
Richardson, D. M. and Rejmánek, M. 2011. Trees and shrubs as invasive alien species—a global review. Divers. Distrib. 17:788809.Google Scholar
Richardson, D. M., MacDonald, I. A. W., and Forsyth, G. G. 1989. Reductions in plant species richness under stands of alien trees and shrubs in the fynbos biome. S. Afr. For. J. 149:18.Google Scholar
Richardson, D. M., Williams, P. A., and Hobbs, R. J. 1994. Pine invasions in the southern hemisphere: determinants of spread and invadability. J. Biogeogr. 21:511527.Google Scholar
Rogers, D. L. 2002. In Situ Genetic Conservation of MONTEREY PINE (Pinus radiata D. Don): Information and Recommendations. Davis, CA University of California, Davis, Division of Agriculture and Natural Resources, Genetic Resources Conservation Program. Rep. 26. 80 p.Google Scholar
Rogers, D. L. 2004. In situ genetic conservation of a naturally restricted and commercially widespread species, Pinus radiata . For. Ecol. Manag. 197:311322.Google Scholar
Russell, W. H. and McBride, J. R. 2003. Landscape scale vegetation-type conversion and fire hazard in the San Francisco bay area open spaces. Landsc. Urban Plann. 64:201208.Google Scholar
Sawyer, J. O., Keeler-Wolf, T., and Evans, J. M. 2009. A Manual of California Vegetation. 2nd ed. Sacramento, CA California Native Plant Society. 1300 p.Google Scholar
Schwinning, S. and Weiner, J. 1998. Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113:447455.Google Scholar
Shmida, A. and Whittaker, R. H. 1981. Pattern and biological microsite effects in two shrub communities, Southern California. Ecology 62:234251.Google Scholar
Simberloff, D., Nuñez, M. A., Ledgard, N. J., Pauchard, A., Richardson, D. M., Sarasola, M., Van Wilgen, B. W., Zalba, S. M., Zenni, R. D., Bustamante, R., Peña, E., and Ziller, S. R. 2010. Spread and impact of introduced conifers in South America: lessons from other southern hemisphere regions. Aust. Ecol. 35:489504.Google Scholar
SYSTAT. 2007. SYSTAT 12, Version 12.00.08. Chicago, IL SYSTAT Software.Google Scholar
Tewksbury, J. J. and Lloyd, J. D. 2001. Positive interactions under nurse-plants: spatial scale, stress gradients and benefactor size. Oecologia 127:425434.Google Scholar
Van Dyke, E. and Holl, K. D. 2001. Maritime chaparral community transition in the absence of fire. Madroño 48:221229.Google Scholar
Weiner, J. 1990. Asymmetric competition in plant populations. Trends Ecol. Evol. 5:360364.Google Scholar
Whitham, T. G., Bailey, J. K., Schweitzer, J. A., Shuster, S. M., Bangert, R. K., LeRoy, C. J., Lonsdorf, E. V., Allan, G. J., DiFazio, S. P., Potts, B. M., Fischer, D. G., Gehring, C. A., Lindroth, R. L., Marks, J. C., Harte, S. C., Wimp, G. M., and Wooley, S. C. 2006. A framework for community and ecosystem genetics: from genes to ecosystems. Nat. Rev. 7:510523.Google Scholar
Whitham, T. G., Young, W. P., Martinsen, G. D., Gehring, C. A., Schweitzer, J. A., Shuster, S. M., Wimp, G. M., Fischer, D. G., Bailey, J. K., Lindroth, R. L., Woolbright, S., and Kuske, C. R. 2003. Community and ecosystem genetics: a consequence of the extended phenotype. Ecology 84:559573.Google Scholar
Williams, M. C. and Wardle, G. M. 2007. Pine and eucalypt litterfall in a pine-invaded eucalypt woodland: the role of fire and canopy cover. For. Ecol. Manag. 253:110.Google Scholar
[WRCC] Western Regional Climate Center. 2011. San Francisco Richmond, California (047767): Period of Record Monthly Climate Summary—Period of Record: July 1, 1948, to December 31, 2010. http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?ca7767. Accessed: April 7, 2011.Google Scholar
Zavaleta, E. S. and Kettley, L. S. 2006. Ecosystem change along a woody invasion chronosequence in a California grassland. J. Arid Environ. 66:290306.Google Scholar