Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-22T10:02:55.271Z Has data issue: false hasContentIssue false

Genetic Identity and Diversity of Perennial Pepperweed (Lepidium latifolium) in Its Native and Invaded Ranges

Published online by Cambridge University Press:  20 January 2017

John F. Gaskin*
Affiliation:
USDA Agricultural Research Service, 1500 N. Central Avenue, Sidney, MT 59270
Mark Schwarzländer
Affiliation:
University of Idaho, Department of Plant, Soil and Entomological Sciences, Moscow, ID 83844
Hariet L. Hinz
Affiliation:
CABI, Rue des Grillons 1, CH-2800 Delémont, Switzerland
Livy Williams III
Affiliation:
USDA-ARS, European Biological Control Laboratory, Campus International de Baillarguet, CS90013 Montferrier sur Lez, 34988 St. Gely du Fesc CEDEX, France
Esther Gerber
Affiliation:
CABI, Rue des Grillons 1, CH-2800 Delémont, Switzerland
Brian G. Rector
Affiliation:
USDA-ARS, Great Basin Rangelands Research Unit, 920 Valley Road, Reno, NV 89512
DaoYuan Zhang
Affiliation:
Key Laboratory of Biogeography and Bioresources in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
*
Corresponding author's Email: [email protected]

Abstract

Perennial pepperweed is an invasive plant species in North America, native to temperate Eurasia and northern Africa. Effective biological control depends upon correct taxonomic identification. Therefore, we investigated morphological and genetic data (cpDNA sequences and amplified fragment length polymorphisms [AFLP]) in its native range, where the species is at times treated as multiple taxa (L. latifolium, L. affine and L. obtusum). We also analyzed genetic data to determine the number and distribution of haplotypes and genotypes in the invaded range. Using Bayesian analysis, we found three clusters of AFLP genotypes in the native range, but little correlation between these clusters and morphological characters used to distinguish taxa. Also, we found combinations of morphological character states within many native range plants that are incompatible with current species descriptions, offering no support for splitting L. latifolium sensu lato into three species. In North America 97% of the genetic variation was among populations and there were only eight AFLP genotypes in 288 plants, suggesting few introductions or a severe bottleneck, and little or no creation of new genotypes since introduction. We found plants in the native range that are genetically similar (88 to 99%) to six of the eight invasive AFLP genotypes, suggesting that Kazakhstan and China are origins for much of the North American invasion.

Type
Research
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Al-Shehbaz, I. A. 2012. Lepidium . Pages 550556 in Baldwin, B. G., Goldman, D. H., Keil, D. J., Patterson, R., Rosatti, T. J., and Wilken, D. H., eds. The Jepson Manual: Vascular Plants of California. 2nd ed. Berkeley, CA University of California Press.Google Scholar
Al-Shehbaz, I. A. and Gaskin, J. F. 2010. Lepidium . Pages 570596 in Flora of North America Editorial Committee, eds. Flora of North America North of Mexico. Vol. 7. New York Oxford University Press.Google Scholar
Anonymous, . 2012. Missouri Botanical Garden. http://www.tropicos.org. Accessed: October 1, 2012.Google Scholar
Blair, A. C., Schaffner, U., Häfliger, P., Meyer, S. K., and Hufbauer, R. A. 2008. How do biological control and hybridization affect enemy escape? Biol. Control 46:358370.Google Scholar
Burdon, J. J., Groves, R. H., and Cullen, J. M. 1981. The impact of biological control on the distribution and abundance of Chondrilla juncea in southeastern Australia. J. Appl. Ecol. 18:957966.Google Scholar
Burdon, J. J., Groves, R. H., Kaye, P. E., and Speer, S. S. 1984. Competition in mixtures of susceptible and resistant genotypes of Chondrilla juncea differentially infected with rust. Oecologia 64:199203.Google Scholar
Bush, V. L. and Komarov, N. A. 1970. Flora of the U.S.S.R., Volume 8 —Capparidaceae, Cruciferae and Resedaceae. Jerusalem Israel Program for Scientific Translations. 524 p.Google Scholar
Campanella, D. M., McEvoy, P. B., and Mundt, C. C. 2009. Interaction effects of two biological control organisms on resistant and susceptible weed biotypes of Chondrilla juncea in western North America. Biol. Control 50:5059.Google Scholar
Cheo, T.-Y., Lu, L., Yang, G., Al-Shehbaz, I., and Dorofeev, V. 2001. Lepidium . Pages 193 in Zheng-yi, W. and Raven, P. H., eds. Flora of China, Vol. 8. Beijing Science Press, http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=118034. Accessed October 1, 2012.Google Scholar
Crompton, C. W., Stahevitch, A. E., and Wojtas, W. A. 1990. Morphometric studies of the Euphorbia esula group (Euphorbiaceae) in North America. Can. J. Bot. 68:19781988.Google Scholar
Czerepanov, S. K. 1995. Vascular Plants of Russia and Adjacent States (the Former USSR). Cambridge, U.K. Cambridge University Press. 516 p.Google Scholar
De Queiroz, K. 1999. The general lineage concept of species and the defining properties of the species category. Pages 4989 in Wilson, R. A., ed. Species, New Interdisciplinary Essays. Cambridge, MA MIT Press.Google Scholar
Dice, L. 1945. Measures of the amount of ecologic association between species. Ecology 26:297302.Google Scholar
Earl, D. A. and vonHoldt, B. M. 2011. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Gen. Res. 4:359361.Google Scholar
Ellstrand, N. C. and Schierenbeck, K. A. 2000. Hybridization as a stimulus for the evolution of invasiveness in plants? P. Natl. Acad. Sci. USA 97:70437050.Google Scholar
Estoup, A. and Guillemaud, T. 2010. Reconstructing routes of invasion using genetic data: why, how and so what? Mol. Ecol. 19:41134130.Google Scholar
Evanno, G., Regnaut, S., and Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14:26112620.Google Scholar
Evans, H. C. and Ellison, C. A. 2004. The new encounter concept: centres of origin, host specificity and plant pathogens. Pages 4247 in Cullen, J. M., Briese, D. T., Kriticos, D. J., Lonsdale, W. M., Morin, L., and Scott, J. K., eds. Proceedings of the XI International Symposium on Biological Control of Weeds. Canberrra, Australia CSIRO Entomology.Google Scholar
Excoffier, L., Laval, G., and Schneider, S. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol. Bioinform. 1:4750.Google Scholar
Falush, D., Stephens, M., and Pritchard, J. K. 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:15671587.Google Scholar
Falush, D., Stephens, M., and Pritchard, J. K. 2007. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol. Ecol. Notes 7:574578.Google Scholar
Francis, A. and Warwick, S. I. 2007. The Biology of invasive alien plants in Canada. 8. Lepidium latifolium L. Can. J. Plant Sci. 87:639658.Google Scholar
Fritz, R. S., Nichols-Orians, C. M., and Brunsfeld, S. J. 1994. Interspecific hybridization of plants and resistance to herbivores: hypotheses, genetics, and variable responses in a diverse herbivore community. Oecologia 97:106117.Google Scholar
Gaskin, J. F., Bon, M.-C., Cock, M.J.W., Cristofaro, M., Biase, A. D., De Clerck-Floate, R., Ellison, C. A., Hinz, H. L., Hufbauer, R. A., Julien, M. H., and Sforza, R. 2011. Applying molecular-based approaches to classical biological control of weeds. Biol. Control 58:121.Google Scholar
Gaskin, J. L. and Kazmer, D. J. 2009. Introgression between invasive saltcedars (Tamarix chinensis and T. ramosissima) in the USA. Biol. Invasions 11:11211130.Google Scholar
Gaskin, J. F., Schwarzländer, M., Williams, L., Gerber, E., and Hinz, H. L. 2012. Minimal genetic diversity in the facultatively outcrossing perennial pepperweed (Lepidium latifolium) invasion. Biol. Invasions 14:17971807.Google Scholar
Gaskin, J. F., Zhang, D.-Y., and Bon, M.-C. 2005. Invasion of Lepidium draba (Brassicaceae) in the western United States: distributions and origins of chloroplast DNA haplotypes. Mol. Ecol. 14:23312341.Google Scholar
Genton, B. J., Shykoff, J. A., and Giraud, T. 2005. High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction Mol. Ecol. 14:42754285.Google Scholar
GISD. 2005. Global Invasive Species Database: Lepidium latifolium . http://www.issg.org/database/species/distribution.asp?si=996&fr=1&sts=&lang=EN. Accessed: October 1, 2012.Google Scholar
Goolsby, J. A., De Barro, P. J., Makinson, J. R., Pemberton, R. W., Hartley, D. M., and Frohlich, D. R. 2006. Matching the origin of an invasive weed for selection of a herbivore haplotype for a biological control programme. Mol. Ecol. 15:287297.Google Scholar
Goolsby, J. A. and Moran, P. 2009. Host range of Tetramesa romana Walker (Hymenoptera: Eurytomidae), a potential biological control of giant reed, Arundo donax L. in North America. Biol. Control 49:160168.Google Scholar
Hamilton, M. 1999. Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Mol. Ecol. 8:521523.Google Scholar
Hedge, I. 1965. Lepidium. Pages 279285 in Davis, P. H., ed. Flora of Turkey and the East Aegean Islands. Vol. 1. Edinburgh Edinburgh University Press.Google Scholar
Helbig, A. J., Knox, A. G., Parkin, D. T., Sangster, G., and Collinson, M. 2002. Guidelines for assigning species rank. Ibis 144:518525.Google Scholar
Henman, D. 2003. Flora Europaea on CD-ROM. Divers Distrib 9:411412.Google Scholar
Hinz, H. L., Gerber, E., Cristofaro, M., Tronci, C., Seier, M. K., Korotyaev, B. A., Gültekin, L., Williams, L., and Schwarzlaender, M. All against one: first results of a newly formed foreign exploration consortium for the biological control of perennial pepperweed. Pages 154159 in Julien, M. H., Sforza, R., Bon, M.-C., Evans, H., Hatcher, P., Hinz, H. L., and Rector, B. G. 2008. Proceedings of the XII International Symposium on Biological Control of Weeds (eds.). Wallingford, UK CAB International.Google Scholar
Hollingsworth, M. L. and Bailey, J. P. 2000. Evidence for massive clonal growth in the invasive weed Fallopia japonica (Japanese knotweed). Bot. J. Linn. Soc. 133:463472.Google Scholar
Hrusa, G. F. and Gaskin, J. F. 2008. An evaluation of California Russian thistle: the Salsola tragus L. sensu auct. complex (Salsola sect. kali: Chenopodiaceae). Madroño 55:113131.Google Scholar
Jafri, S. M. H. 1973. Brassicaceae. Pages 1308 in Flora of Pakistan, 55. http://www.efloras.org/florataxon.aspx?flora_id=5&taxon_id=10120. Accessed: October 1, 2012.Google Scholar
Kolbe, J. J., Glor, R. E., Schettino, L. R., Lara, A. C., Larson, A., and Losos, J. B. 2004. Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177181.Google Scholar
Lee, C. 2002. Evolutionary genetics of invasive species. Trends Ecol. Evol. 17:386391.Google Scholar
Li, J. and Ye, W.-H. 2006. Genetic diversity of alligator weed ecotypes is not the reason for their different responses to biological control. Aquat. Bot. 85:155158.Google Scholar
Lym, R. G. and Carlson, R. B. 2002. Effect of leafy spurge (Euphorbia esula) genotype on feeding damage and reproduction of Aphthona spp.: implications for biological weed control. Biol. Control 23:127133.Google Scholar
Marrs, R. A., Sforza, R., and Hufbauer, R. A. 2008. When invasion increases population genetic structure: a study with Centaurea diffusa . Biol. Invasions 10:561572.Google Scholar
Meirmans, P. G. and Van Tienderen, P. H. 2004. GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol. Ecol. Notes 4:792794.Google Scholar
Moody, M. and Les, D. 2007. Geographic distribution and genotypic composition of invasive hybrid watermilfoil (Myriophyllum spicatum × M. sibiricum) populations in North America. Biol. Invasions 9:559570.Google Scholar
Müller-Schärer, H., Schaffner, U., and Steinger, T. 2004. Evolution in invasive plants: implications for biological control. Trends Ecol. Evol. 19:417422.Google Scholar
Papa, R., Troggio, M., Ajmone-Marsan, P., and Nonnis Marzano, F. 2005. An improved protocol for the production of AFLP markers in complex genomes by means of capillary electrophoresis. J. Anim. Breed. Genet. 122:6268.Google Scholar
Petit, R. J. 2004. Biological invasions at the gene level. Divers. Distrib. 10:159165.Google Scholar
Pielou, E. C. 1969. An introduction to mathematical ecology. New York Wiley. 66 p.Google Scholar
Pritchard, J. K., Stephens, M., and Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945959.Google Scholar
Renz, M. J., Steinmaus, S. J., Gilmer, D. S., and DiTomaso, J. M. 2012. Spread dynamics of perennial pepperweed (Lepidium latifolium) in two seasonal wetland areas. Invas. Plant Sci. Manage. 5:5768.Google Scholar
Rieseberg, L. H., Wood, T. E., and Baack, E. J. 2006. The nature of plant species. Nature 440:524527.Google Scholar
Rios, J. L. V. and Garcia, JFE. 1998. Catalogo de Malezas de Mexico. Ciudad de Mexico DF Universidad Nacional Autonoma de Mexico y el Fondo de Cultura Economica. 449 p.Google Scholar
Robbins, W. W., Bellue, M. K., and Ball, W. S. 1952. Weeds of California. Sacramento, CA California Department of Agriculture, State Printing Office. 546 p.Google Scholar
Rohlf, F. J. 1994. NTSYS-pc: Numerical taxonomy and multivariate analysis system. Exeter Software, Setauket, NY.Google Scholar
Roman, J. and Darling, J. A. 2007. Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol. Evol. 22:454464.Google Scholar
Sakai, A. K., Allendorf, F., Holt, J. S., Lodge, D. M., and Molofsky, J. 2001. The population biology of invasive species. Ann. Rev. Ecol. Syst. 32:305332.Google Scholar
Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. P. Natl. Acad. Sci. USA 99:24452449.Google Scholar
Schaffner, U. 2001. Host range testing of insects for biological weed control: how can it be better interpreted? BioScience 51:951959.Google Scholar
Skinner, M. W. and Pavlik, B. M. 1994. Inventory of Rare and Endangered Plants of California, 5th ed. Sacramento, CA California Native Plant Society. 338 p.Google Scholar
Tutin, T. G., Heywood, V. H., Burgess, N. A., Moore, D. M., Valentine, D. H., Walters, S. M., and Webb, D. A. 1976. Flora Europea. Cambridge, UK Cambridge University Press.Google Scholar
Trumbo, J. 1994. Perennial pepperweed: a threat to wildland areas. CalEPPC Newsletter 2.Google Scholar
USDA. 2005. The PLANTS Database. National Plant Data Center, Baton Rouge, LA 70874-4490 USA. http://plants.usda.gov/java/. Accessed: October 1, 2012.Google Scholar
Van Klinken, R. D. and Edwards, O. R. 2002. Is host-specificity of weed biological control agents likely to evolve rapidly following establishment? Ecol. Lett. 5:590596.Google Scholar
Vos, P., Hogers, R., Bleeker, M., Reijans, M., Vandelee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., and Zabeau, . 1995. AFLP - a new technique for DNA-fingerprinting. Nucleic Acids Res. 23:44074414.Google Scholar
Ward, S. M., Gaskin, J. F., and Wilson, L. M. 2008. Ecological genetics of plant invasion: What do we know? Invasive Plant Sci. Manage. 1:98109.Google Scholar
Xu, C. Y., Julien, M. H., Fatemi, M., Girod, C., Van Klinken, R. D., Gross, C. L., and Novak, S. J. 2010. Phenotypic divergence during the invasion of Phyla canescens in Australia and France: evidence for selection-driven evolution. Ecol. Lett. 13:3244.Google Scholar
Young, J. A., Palmquist, D. E., and Blank, R. R. 1998. The ecology and control of perennial pepperweed (Lepidium latifolium). Weed Tech 12:402405.Google Scholar
Young, J. A., Turner, C., and James, L. 1995. Perennial pepperweed. Rangelands 17:121123.Google Scholar
Zouhar, K. 2004. Lepidium latifolium . In Fire Effects Information System. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory. http://www.fs.fed.us/database/feis/plants/forb/leplat/all.html. Accessed: October 1, 2012.Google Scholar