Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T18:45:37.340Z Has data issue: false hasContentIssue false

Is semantic learning strategy an early clinical marker for amnestic mild cognitive impairment and Alzheimer’s disease?

Published online by Cambridge University Press:  20 December 2019

Nan Zhang*
Affiliation:
Department of Neurology, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin, China Department of Neurology, Tianjin Medical University General Hospital, Airport Hospital, Tianjin, China
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Commentary
Copyright
© International Psychogeriatric Association 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, J. T., Sanders, A. L., Maccotta, L. and Buckner, R.L. (2001). Neural correlates of verbal memory encoding during semantic and structural processing tasks. Neuroreport, 12, 12511256. doi: 10.1097/00001756-200105080-00039.CrossRefGoogle ScholarPubMed
Buschke, H. et al. (2017). Memory binding test distinguishes amnestic mild cognitive impairment and dementia from cognitively normal elderly. Archives of Clinical Neuropsychology, 32, 2939. doi: 10.1093/arclin/acw083.CrossRefGoogle ScholarPubMed
de Wilde, A. et al. (2018). Association of amyloid positron emission tomography with changes in diagnosis and patient treatment in an unselected memory clinic cohort: the ABIDE project. JAMA Neurology, 75, 10621070. doi: 10.1001/jamaneurol.2018.1346.CrossRefGoogle Scholar
Dubois, B. et al. (2014). Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. The Lancet Neurology, 13, 614629. doi: 10.1016/S1474-4422(14)70090-0.CrossRefGoogle ScholarPubMed
Gagliardi, G. et al. (2019). Which episodic memory performance is associated with Alzheimer’s disease biomarkers in elderly cognitive complainers? Evidence from a longitudinal observational study with four episodic memory tests (Insight-PreAD). Journal of Alzheimer’s Disease, 70, 811824. doi: 10.3233/JAD-180966.CrossRefGoogle Scholar
Jack, C. R. Jr. et al. (2018). NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia, 14, 535562. doi: 10.1016/j.jalz.2018.02.018.CrossRefGoogle Scholar
Jackson, O. 3rd and Schacter, D. L. (2004). Encoding activity in anterior medial temporal lobe supports subsequent associative recognition. Neuroimage, 21, 456462. doi: 10.1016/j.neuroimage.2003.09.050.CrossRefGoogle ScholarPubMed
Landau, S. M. et al. (2010). Comparing predictors of conversion and decline in mild cognitive impairment. Neurology, 75, 230238. doi: 10.1212/WNL.0b013e3181e8e8b8.CrossRefGoogle ScholarPubMed
Landau, S. M., Horng, A., Fero, A., Jagust, W. J. and Alzheimer’s Disease Neuroimaging Initiative (2016). Amyloid negativity in patients with clinically diagnosed Alzheimer disease and MCI. Neurology, 86, 13771385. doi: 10.1212/WNL.0000000000002576.CrossRefGoogle ScholarPubMed
Manning, J. R., Sperling, M. R., Sharan, A., Rosenberg, E. A. and Kahana, M.J., (2012). Spontaneously reactivated patterns in frontal and temporal lobe predict semantic clustering during memory search. Journal of Neuroscience, 32, 88718878. doi: 10.1523/JNEUROSCI.5321-11.2012.CrossRefGoogle ScholarPubMed
Mowrey, W. B. et al. (2016). Memory binding test predicts incident amnestic mild cognitive impairment. Journal of Alzheimer’s Disease, 53, 15851595. doi: 10.3233/JAD-160291.CrossRefGoogle ScholarPubMed
Mowrey, W. B. et al. (2018). Memory binding test predicts incident dementia: results from the einstein aging study. Journal of Alzheimer’s Disease, 62, 293304. doi: 10.3233/JAD-170714.CrossRefGoogle ScholarPubMed
Papp, K. V. et al. (2015). Free and cued memory in relation to biomarker-defined abnormalities in clinically normal older adults and those at risk for Alzheimer’s disease. Neuropsychologia, 73, 169175. doi: 10.1016/j.neuropsychologia.2015.04.034.CrossRefGoogle ScholarPubMed
Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256, 183194. doi: 10.1111/j.1365-2796.2004.01388.x.CrossRefGoogle ScholarPubMed
Rentz, D. M. et al. (2010). Cognition, reserve, and amyloid deposition in normal aging. Annals of Neurology, 67, 353364. doi: 10.1002/ana.21904.Google ScholarPubMed
Sun, Q. et al. (2016). Semantic clustering and sleep in patients with amnestic mild cognitive impairment or with vascular cognitive impairment-no dementia. International Psychogeriatrics, 28, 14931502. doi: 10.1017/S1041610216000739.CrossRefGoogle ScholarPubMed
Teipel, S. J. et al. (2018). Effect of Alzheimer’s disease risk and protective factors on cognitive trajectories in subjective memory complainers: an INSIGHT-preAD study. Alzheimer’s & Dementia, 14, 11261136. doi: 10.1016/j.jalz.2018.04.004.CrossRefGoogle ScholarPubMed
Wang, X. et al. (2019). Validation of the Chinese version of the memory binding test for distinguishing amnestic mild cognitive impairment from cognitively normal elderly individuals. International Psychogeriatrics, 31, 17211730. doi: 10.1017/S1041610219001649.Google Scholar
Zhang, L. et al. (2019). Medial temporal lobe atrophy is related to learning strategy changes in amnestic mild cognitive impairment. Journal of the International Neuropsychological Society, 25, 706717. doi: 10.1017/S1355617719000353.CrossRefGoogle ScholarPubMed
Zhang, N. et al. (2015). Cognitive impairment in Chinese neuromyelitis optica. Multiple Sclerosis Journal, 21, 18391846. doi: 10.1177/1352458515576982.CrossRefGoogle ScholarPubMed