Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-16T17:07:54.019Z Has data issue: false hasContentIssue false

Effects of virtual reality-based spatial cognitive training on hippocampal function of older adults with mild cognitive impairment

Published online by Cambridge University Press:  03 July 2020

Jin-Hyuck Park*
Affiliation:
Department of Occupational Therapy, College of Medical Science, Soonchunhyang University, Asan-si, Republic of Korea
*
Correspondence should be addressed to: Jin-Hyuck Park, Room 1401, College of Medical Science, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si, Chungcheongnam-do31538, Republic of Korea. Phone: +82-41-530-4773. Email: [email protected].

Abstract

Background:

To date, there is a controversy on effects of cognitive intervention to maintain or improve hippocampal function for older adults with mild cognitive impairment (MCI).

Objective:

The main objective of this study was to exam effects of virtual reality-based spatial cognitive training (VR-SCT) using VR on hippocampal function of older adults with MCI.

Method:

Fifty-six older adults with MCI were randomly allocated to the experimental group (EG) that received the VR-SCT or the waitlist control group (CG) for a total of 24 sessions. To investigate effects of the VR-SCT on spatial cognition and episodic memory, the Weschsler Adult Intelligence Scale-Revised Block Design Test (WAIS-BDT) and the Seoul Verbal Learning Test (SVLT) were used.

Results:

During the sessions, the training performances gradually increased (p < .001). After the intervention, the EG showed significant greater improvements in the WAIS-BDT (p < .001, η2 = .667) and recall of the SVLT (p < .05, η2 =.094) compared to the CG but in recognition of the SVLT (p > .05, η2 =.001).

Conclusion:

These results suggest that the VR-SCT might be clinically beneficial to enhance spatial cognition and episodic memory of older adults with MCI.

Type
Original Research Article
Copyright
© International Psychogeriatric Association 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boyke, J., Driemeyer, J., Gaser, C., Büchel, C. and May, A. (2008). Training-induced brain structure changes in the elderly. Journal of Neuroscience, 28, 70317035. doi: 10.1523/JNEUROSCI.0742-08.2008.CrossRefGoogle ScholarPubMed
Braak, H. and Del Tredici, K. (2015). The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain, 138, 28142833. doi: 10.1093/brain/awv236 CrossRefGoogle ScholarPubMed
Cohen, J. (1988). Statistical power analysis for the behavioral science. (2nd ed.). Lawrence Erlbaum Associates, Hillsdale, NJ.Google Scholar
Colombo, D. et al. (2017). Egocentric and allocentric spatial reference frames in aging: a systematic review. Neuroscience and Biobehavioral Reviews, 80, 605621. doi: 10.1016/j.neubiorev.2017.07.012.CrossRefGoogle ScholarPubMed
Cushman, L. A., Stein, K. and Duffy, C. J. (2008). Detecting navigational deficits in cognitive aging and Alzheimer’s disease using virtual reality. Neurology, 71, 888895. doi: 10.1212/01.wnl.0000326262.67613.fe.CrossRefGoogle ScholarPubMed
Daugherty, A. M. et al. (2015). Path complexity in virtual water maze navigation: differential associations with age, sex, and regional brain volume. Cerebral Cortex, 25, 31223131. doi: 10.1093/cercor/bhu107.CrossRefGoogle ScholarPubMed
Farias, S. T., Harrell, E., Neumann, C. and Houtz, A. (2003). The relationship between neuropsychological performance and daily functioning in individuals with Alzheimer’s disease: ecological validity of neuropsychological tests. Archives of Clinical Neuropsychology, 18, 655672. doi: 10.1093/arclin/18.6.655.CrossRefGoogle ScholarPubMed
Faul, F, Erdfelder, E., Lang, A. and Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavior, and biomedical science. Behavior Research Methods, 39, 175191. doi: 10.3758/BF03193146.CrossRefGoogle Scholar
Gaunet, F., Vidal, M., Kemeny, A. & Berthoz, A. (2001). Active, passive and snapshot exploration in a virtual environment: influence on scene memory, reorientation and path memory. Cognitive Brain Research, 11, 409420. doi: 10.1016/S0926-6410(01)00013-1.CrossRefGoogle Scholar
Gilbert, J. R. and Moran, R. J. (2016). Inputs to prefrontal cortex support visual recognition in the aging brain. Scientific Reports, 6, 31943. doi: 10.1038/srep31943.CrossRefGoogle ScholarPubMed
Hayes, S. M., Ryan, L., Schnyer, D. M. and Nadel, L. (2004). An fMRI study of episodic memory: retrieval of object, spatial, and temporal information. Behavioral Neuroscience, 118, 885896. doi: 10.1037/0735-7044.118.5.885.CrossRefGoogle ScholarPubMed
Howett, D. et al. (2019). Differentiation of mild cognitive impairment using an entorhinal cortex-based test of virtual reality navigation. Brain, 142, 17511766. doi: 10.1093/brain/awz116.CrossRefGoogle ScholarPubMed
Iaria, G., Chen, J. K., Guariglia, C., Ptito, A. and Petrides, M. (2007). Retrosplenial and hippocampal brain regions in human navigation: complementary functional contributions to the formation and use of cognitive maps. European Journal of Neuroscience, 25, 890899. doi: 10.1111/j.1460-9568.2007.05371.x.CrossRefGoogle Scholar
Kang, Y. and Na, D. (2003). Seoul neuropsychological screening battery. Human Brain Research & Consulting Co, Incheon.Google Scholar
Kessels, R. P. C., Hobbel, D. and Postma, A. (2007). Aging, context memory and binding: a comparison of “what, where and when” in young and older adults. International Journal of Neuroscience, 117, 795810. doi: 10.1080/00207450600910218.CrossRefGoogle Scholar
Laczó, J. et al. (2017). Exploring the contribution of spatial navigation to cognitive function in older adults. Neurobiology of Aging, 51, 6770. doi: 10.1016/j.neurobiolaging.2016.12.003.CrossRefGoogle ScholarPubMed
Lövdén, M. et al. (2012). Spatial navigation training protects the hippocampus against age-related changes during early and late adulthood. Neurobiology of Aging, 33, 620e9. doi: 10.1016/j.neurobiolaging.2011.02.013.CrossRefGoogle ScholarPubMed
Maguire, E. A., Woollett, K. and Spiers, H. J. (2006). London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus, 16, 10911101. doi: 10.1002/hipo.20233.CrossRefGoogle ScholarPubMed
Meade, M. E., Meade, J. G., Sauzeon, H. and Fernandes, M. A. (2019). Active navigation in virtual environments benefits spatial memory in older adults. Brain Sciences, 9, 47. doi: 10.3390/brainsci9030047.CrossRefGoogle ScholarPubMed
Meneghetti, C., Borella, E. and Pazzaglia, F. (2016). Mental rotation training: transfer and maintenance effects on spatial abilities. Psychological research, 80, 113127. doi: 10.1007/s00426-014-0644-7.CrossRefGoogle ScholarPubMed
Metha, D., Jackso, R., Paul, G., Shi, J. and Sabbagh, M. (2017). Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010–2015. Expert Opinion on Investigational Drugs, 26, 735739. doi: 10.1080/13543784.2017.1323868.Google Scholar
Migo, E. M. et al. (2016). Investigating virtual reality navigation in amnestic mild cognitive impairment using fMRI. Aging, Neuropsychology, and Cognition. 23, 196217. doi: 10.1080/13825585.2015.1073218.CrossRefGoogle ScholarPubMed
Montaldi, D. and Mayes, A. R. (2010). The role of recollection and familiarity in the functional differentiation of the medial temporal lobes. Hippocampus, 20, 12911314. doi: 10.1002/hipo.20853.CrossRefGoogle ScholarPubMed
Park, J-H. and Heo, S-Y. (2017). Mobile screening test system for mild cognitive impairment: concurrent validity with the Montreal Cognitive Assessment and Inter-rater reliability. Journal of Korea Society of Cognitive Rehabilitation, 6, 2542.Google Scholar
Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256, 183194. doi: 10.1111/j.1365-2796.2004.01388.x.CrossRefGoogle ScholarPubMed
Plancher, G., Tirard, A., Gyselinck, V., Nicolas, S. and Piolino, P. (2012). Using virtual reality to characterize episodic memory profiles in amnestic mild cognitive impairment and Alzheimer’s disease: influence of active and passive encoding. Neuropsychologia, 50, 592602. doi: 10.1016/j.neuropsychologia.2011.12.013.CrossRefGoogle ScholarPubMed
Roberts, J. L., Clare, L. and Woods, R. T. (2009). Subjective memory complaints and awareness of memory functioning in mild cognitive impairment: a systematic review. Dementia and Geriatric Cognitive Disorders, 28, 95109. doi: 10.1159/000234911.CrossRefGoogle ScholarPubMed
Rugg, M. D. and Yonelinas, A. P. (2003). Human recognition memory: a cognitive neuroscience perspective. Trends in Cognitive Science, 7, 313319. doi: 10.1016/S1364-6613(03)00131-1.CrossRefGoogle ScholarPubMed
Savulich, G. et al. (2017). Cognitive training using a novel memory game on an iPad in patients with amnestic mild cognitive impairment (aMCI). International Journal of Neurosychopharmacology, 20, 624633. doi: 10.1093/ijnp/pyx040.CrossRefGoogle Scholar
Schuck, N. W., Doeller, C. F., Polk, T. A., Lindenberger, U. and Li, S. C. (2015). Human aging alters the neural computation and representation of space. Neuroimage, 117, 141150. doi: 10.1016/j.neuroimage.2015.05.031.CrossRefGoogle ScholarPubMed
Schultheis, M. T., Himelstein, J. and Rizzo, A. A. (2002). Virtual reality and neuropsychology: upgrading the current tools. Journal of Head Trauma Rehabilitation, 17, 378394.10.1097/00001199-200210000-00002CrossRefGoogle ScholarPubMed
Tulving, E. (2002). Episodic memory: from mind to brain. Annual Review Psychology, 53, 125.10.1146/annurev.psych.53.100901.135114CrossRefGoogle Scholar
Wechsler, D. (2008). Technical and interpretive manual. Pearson, San Anotionio, TX.Google Scholar
Zhong, J. Y. and Moffat, S. D. (2018). Extrahippocampal contributions to age-related changes in spatial navigation ability. Frontier in Human Neuroscience, 12, 272. doi: 10.3389/fnhum.2018.00272.CrossRefGoogle ScholarPubMed