Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T23:08:09.589Z Has data issue: false hasContentIssue false

Cognitive reserve and working memory in cognitive performance of adults with subjective cognitive complaints: longitudinal structural equation modeling

Published online by Cambridge University Press:  24 September 2019

Cristina Lojo-Seoane*
Affiliation:
Department of Developmental and Educational Psychology, Faculty of Psychology, University of Santiago de Compostela, Spain
David Facal
Affiliation:
Department of Developmental and Educational Psychology, Faculty of Psychology, University of Santiago de Compostela, Spain
Joan Guàrdia-Olmos
Affiliation:
Institute of Neuroscience, UB Institute of Complex Systems, Faculty of Psychology, University of Barcelona, Spain
Arturo X. Pereiro
Affiliation:
Department of Developmental and Educational Psychology, Faculty of Psychology, University of Santiago de Compostela, Spain
María Campos-Magdaleno
Affiliation:
Department of Developmental and Educational Psychology, Faculty of Psychology, University of Santiago de Compostela, Spain
Sabela C. Mallo
Affiliation:
Department of Developmental and Educational Psychology, Faculty of Psychology, University of Santiago de Compostela, Spain
Onésimo Juncos-Rabadán
Affiliation:
Department of Developmental and Educational Psychology, Faculty of Psychology, University of Santiago de Compostela, Spain
*
Correspondence should be addressed to: Cristina Lojo-Seoane, Departamento de Psicoloxía Evolutiva e da Educación, Universidade de Santiago de Compostela. Rúa Xosé María Suárez Núñez, s/n; Campus Vida. 15782 Santiago de Compostela, España, Spain. Phone: + 34 600 942 412; Fax: + 34 881 813 901. Email: [email protected].

Abstract

Objective:

To study the influence of cognitive reserve (CR) on cognitive performance of individuals with subjective cognitive complaints (SCCs) within a period of 36 months.

Design:

We used a general linear model repeated measures procedure to analyze the differences in performance between three assessments. We used a longitudinal structural equation modeling to analyze the relationship between CR and cognitive performance at baseline and at two follow-up assessments.

Setting:

Participants with SCCs were recruited and assessed in primary care health centers.

Participants:

A total of 212 participants older than 50 years with SCCs.

Measurements:

Cognitive reserve data were collected with an ad hoc questionnaire administered to the subjects in an interview. General cognitive performance (GCP), episodic memory (EM), and working memory (WM) have been evaluated. The Mini-Mental State Examination and the total score of Spanish version of the Cambridge Cognitive Examination evaluated the GCP. Episodic memory was assessed with the Spanish version of the California Verbal Learning. Working memory was evaluated by the counting span task and the listening span task.

Results:

The satisfactory fit of the proposed model confirmed the direct effects of CR on WM and GCP at baseline, as well as indirect effects on EM and WM at first and second follow-up. Indirect effects of CR on other cognitive constructs via WM were observed over time.

Conclusion:

The proposed model is useful for measuring the influence of CR on cognitive performance over time. Cognitive response acquired throughout life may influence cognitive performance in old age and prevent cognitive deterioration, thus increasing processing resources via WM.

Type
Original Research Article
Copyright
© International Psychogeriatric Association 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s and Dementia, 7, 270279. doi:10.1016/j.jalz.2011.03.008CrossRefGoogle Scholar
Belleville, S., Sylvain-Roy, S., de Boysson, C. and Ménard, M. C. (2008). Characterizing the memory changes in persons with mild cognitive impairment. In: Sossin, W. S., Lacaille, J.-C., Castellucci, V. F. and Belleville, S. (Eds.), Progress in Brain Research Essence of Memory(pp. 365375). Amsterdam, Netherlands: Elsevier Science. doi:10.1016/S0079-6123(07)00023-4CrossRefGoogle Scholar
Benedet, M. J. and Alejandre, M. A. (1998). TAVEC: Test de Aprendizaje Verbal España-Complutense. Madrid: TEA Ediciones.Google Scholar
Campos-Magdaleno, M., Facal, D., Lojo-Seoane, C., Pereiro, A. X. and Juncos-Rabadán, O. (2017). Longitudinal assessment of verbal learning and memory in amnestic mild cognitive impairment: practice effects and meaningful changes. Frontiers in Psychology, 8, 1231. doi:10.3389/fpsyg.2017.01231CrossRefGoogle ScholarPubMed
Case, R., Kurland, M. D. and Goldberg, J. (1982). Operational efficiency and the growth of short-term memory span. Journal of Experimental Child Psychology, 33, 386404. doi:10.1016/0022-0965(82)90054-6CrossRefGoogle Scholar
Chapko, D., McCormack, R., Black, C., Staff, R. and Murray, A. (2017). Life-course determinants of cognitive reserve (CR) in cognitive aging and dementia – a systematic literature review. Aging and Mental Health, 13, 112. doi:10.1080/13607863.2017.1348471Google Scholar
Constantinidou, F., Zaganas, I., Papastefanakis, E., Kasselimis, D., Nidos, A. and Simos, P. G. (2014). Age-related decline in verbal learning is moderated by demographic factors, working memory capacity, and presence of amnestic mild cognitive impairment. Journal of the International Neuropsychological Society, 20, 114. doi:10.1017/S1355617714000678CrossRefGoogle ScholarPubMed
Cullum, S.et al. (2000). Decline across different domains of cognitive functions in normal ageing: results of a longitudinal population-based study using CAMCOG. International Journal of Geriatric Psychiatry, 15, 853862. doi:10.1002/10991166(200009)15:9,853:AID-GPS211.3.0.CO;2-T3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Daneman, M. and Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behaviour, 19, 450466. doi:10.1016/S0022–5371(80)90312-6CrossRefGoogle Scholar
Delis, D. C., Kramer, J. H., Kaplen, E. and Ober, B. A. (1987). Californian Verbal Learning Test. Manual-research edition. San Diego: The Psychological Corporation.Google Scholar
Dufouil, C., Fuhrer, R. and Alpérovitch, A. (2005). Subjective cognitive complaints and cognitive decline: consequence or predictor? The epidemiology of vascular aging study. Journal of the American Geriatrics Society, 53, 616621. doi:http://dx.doi.org/10.1111/j.1532-5415.2005.53209.xCrossRefGoogle ScholarPubMed
Dunn, L. M. and Dunn, L. M. (1981). Peabody picture vocabulary test- revised. Circle Pines: American Guidance Service.Google Scholar
Economou, A., Papageorgiou, S., Karageorgiou, C. and Vassilopoulos, D. (2007). Nonepisodic memory deficits in amnestic MCI. Cognitive and Behavioral Neurology, 20, 99106. doi:10.1097/WNN.0b013e31804c6fe7CrossRefGoogle ScholarPubMed
Facal, D., Guàrdia-Olmos, J. and Juncos-Rabadán, O. (2015). Diagnostic transitions in mild cognitive impairment by use of simple Markov models. International Journal of Geriatric Psychiatry, 30, 669676. doi:10.1002/gps.4197CrossRefGoogle ScholarPubMed
Facal, D., Juncos-Rabadán, O., Pereiro, A. X. and Lojo-Seoane, C. (2014). Working memory span in mild cognitive impairment. Influence of processing speed and cognitive reserve. International Psychogeriatrics, 26, 615625. doi:10.1017/S1041610213002391CrossRefGoogle ScholarPubMed
Facal, D., Valladares- Rodríguez, S., Lojo-Seoane, C., Pereiro, A. X., Anido-Rifón, L. and Juncos-Rabadán, O. (2019). Machine learning approaches to studying the role of cognitive reserve in conversion from mild cognitive impairment to dementia. International Journal of Geriatric Psychiatry, 34, 941949. doi:10.1002/gps.5090CrossRefGoogle Scholar
Ferreira, D.et al. (2016). Different reserve proxies confer overlapping and unique endurance to cortical thinning in healthy middle-aged adults. Behavioural Brain Research, 311, 375383. doi:10.1016/j.bbr.2016.05.061CrossRefGoogle ScholarPubMed
Folstein, M. F., Folstein, S. E. and McHogh, P. R. (1975). “Mini-mental state.” Apractical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198.CrossRefGoogle Scholar
Gagnon, L. G. and Belleville, S. (2011). Working memory in mild cognitive impairment and Alzheimer’s disease: contribution of forgetting and predictive value of complex span tasks. Neuropsychology, 25, 226236. doi:10.1037/a0020919CrossRefGoogle ScholarPubMed
Garibotto, V.et al. (2008). Education and occupation as proxies for reserve in aMCI converters and AD FDG-PET evidence. Neurology, 71, 13421349. doi:10.1212/01.wnl.0000327670.62378.c0CrossRefGoogle Scholar
Giogkaraki, E., Michaelides, M. P. and Constantinidou, F. (2013). The role of cognitive reserve in cognitive aging: results from the neurocognitive study on aging. Journal of Clinical and Experimental Neuropsychology, 35, 10241035. doi:10.1080/13803395.2013.847906CrossRefGoogle Scholar
Hertzog, C., Kramer, A. F., Wilson, R. S. and Lindenberger, U. (2008). Enrichment effects on adult cognitive development: can the functional capacity of older adults be preserved and enhanced? Psychological Science in the Public Interest, 9, 165. doi:10.1111/j.1539-6053.2009.01034.xCrossRefGoogle ScholarPubMed
Hu, L. and Bentler, P. (1999). Cutoff criteria for fit indices in covariance structure analysis: conventional criteria versus new alternatives. Structural Equation Modelling, 6, 155. doi:10.1080/10705519909540118CrossRefGoogle Scholar
Jack, C. R.et al. (2018). NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s & Dementia, 14, 535562. doi:10.1016/j.jalz.2018.02.018CrossRefGoogle Scholar
Jones, R. H., Manly, J., Glymour, M. M., Rentz, D. M., Jefferson, A. L., and Stern, Y. (2011). Conceptual and measurement challenges in research on cognitive reserve. Journal of the International Neuropsychological Society, 17, 19. doi:10.1017/S1355617710001748CrossRefGoogle ScholarPubMed
Juncos-Rabadán, O.et al. (2012). Prevalence and correlates of cognitive impairment in adults with subjective memory complaints in primary care centres. Dementia and Geriatric Cognitive Disorders, 33, 226232. doi:10.1159/000338607CrossRefGoogle ScholarPubMed
Lobo, A., Saz, P., Marcos, G., Día, J. L., de la Cámara, C. and Ventura, T. (1999). Revalidación y normalización del mini- examen cognoscitivo (primera versión en castellano del Mini-Mental Status Examination) en la población general geriátrica. Medicina Clínica, 112, 767774.Google Scholar
Lojo-Seoane, C., Facal, D., Guàrdia-Olmos, J. and Juncos-Rabadán, O. (2014). Structural model for estimating the influence of cognitive reserve on cognitive performance in adults with subjective memory complaints. Archives of Clinical Neuropsychology, 29, 245255. doi:10.1093/arclin/acu007CrossRefGoogle ScholarPubMed
Lojo-Seoane, C., Facal, D., Guàrdia-Olmos, J. and Juncos-Rabadán, O. (2018). Effects of cognitive reserve in a follow-up study in adults with subjective cognitive complaints. Frontiers in Aging Neuroscience, 10, 189. doi:10.3389/fnagi.2018.00189CrossRefGoogle Scholar
Lojo-Seoane, C., Facal, D., Juncos-Rabadán, O. and Pereiro, A. X. (2014). El nivel de vocabulario como indicador de reserva cognitiva en la evaluación del deterioro cognitivo ligero. Anales de Psicología, 30, 11151121. doi:10.6018/analesps.30.3.158481CrossRefGoogle Scholar
López-Pousa, S. (2003). CAMDEX-R: Prueba de exploración Cambridge revisada para la valoración de los trastornos mentales en la vejez. Adaptación española. Madrid: TEA Ediciones.Google Scholar
Mazzeo, S.et al. (2019). The dual role of cognitive reserve in subjective cognitive decline and mild cognitive impairment: a 7-year follow-up study. Journal of Neurology, 266, 487497.CrossRefGoogle ScholarPubMed
Mitchell, A. J., Beaumont, H., Ferguson, D., Yadegarfar, M. and Stubbs, B. (2014). Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: meta-analysis. Acta Psychiatrica Scandinavica, 130, 439451. doi:10.1111/acps.12336CrossRefGoogle ScholarPubMed
Mungas, D., Gavett, B., Fletcher, E., Farias, S. T., DeCarli, C. and Reed, B. (2018). Education amplifies brain atrophy effect on cognitive decline: implications for cognitive reserve. Neurobiology of Aging, 68, 142150. doi:10.1016/j.neurobiolaging.2018.04.002CrossRefGoogle ScholarPubMed
Pereiro, A. X., Ramos-Lema, S., Juncos-Rabadán, O., Facal, D. and Lojo-Seoane, C. (2015). Cambridge cognitive examination-revised: a normative study in a healthy spanish sample. Psicothema, 27, 3239. doi:10.7334/psicothema2014.169Google Scholar
Petersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. Journal of Internal Medicine, 256, 183194. doi:10.1111/j.1365-2796.2004.01388.xCrossRefGoogle ScholarPubMed
Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G. and Kokmmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Archives of Neurology, 56, 303308. doi:10.1001/archneur.56.3.303CrossRefGoogle ScholarPubMed
Pickering, S. J., Baqués, J. and Gathercole, S. E. (1999). Batería de test de memoria de trabajo. Barcelona: Laboratori de Memoria de la Universitat Autónoma de Barcelona. No comercializada.Google Scholar
Reed, B. R.et al. (2010). Measuring cognitive reserve based on the decomposition of episodic memory variance. Brain a Journal of Neurology, 133, 21962209. doi:10.1093/brain/awq154usCrossRefGoogle ScholarPubMed
Reisberg, B. and Gauthier, S. (2008). Current evidence for subjective cognitive impairment (SCI) as the pre-mild cognitive impairment (MCI) stage of subsequently manifest Alzheimer’s disease. International Psychogeriatrics, 20, 116. doi:10.1017/S1041610207006412CrossRefGoogle ScholarPubMed
Roth, M.et al. (1986). CAMDEX. A standardised instrument for the diagnosis of mental disorders in the elderly with special reference to the early detection of dementia. British Journal of Psychiatry, 149, 698709. doi:10.1192/bjp.149.6.698CrossRefGoogle Scholar
Salthouse, T. (1991). Mediation of adult age differences in cognition by reductions in working memory and speed of processing. Psychological Science, 2, 179183. doi:10.1111/j.1467-9280.1991.tb00127.xCrossRefGoogle Scholar
Sandry, J., DeLuca, J. and Chiaravalloti, N. (2015). Working memory capacity links cognitive reserve with long-term memory in moderate to severe TBI: a translational approach. Journal of Neurology, 262, 5964. doi:10.1007/s00415-014-7523-4CrossRefGoogle ScholarPubMed
Sandry, J. and Sumowski, J. F. (2014). Working memory mediates the relationship between intellectual enrichment and long-term memory in multiple sclerosis: an exploratory analysis of cognitive reserve. Journal of the International Neuropsychological Society, 20, 868872. doi:10.1017/S1355617714000630CrossRefGoogle ScholarPubMed
Stern, Y.et al. (2018). Whitepaper: defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimer’s & Dementia. doi:10.1016/j.jalz.2018.07.219CrossRefGoogle Scholar
Sumowski, J. F.et al. (2014). Brain reserve and cognitive reserve protect against cognitive decline over 4.5 years in MS. Neurology, 82, 17761783. doi:10.1212/WNL.0000000000000433CrossRefGoogle ScholarPubMed
Tucker, A. M. and Stern, Y. (2011). Cognitive reserve in aging. Current Alzheimer Research, 8, 354360. doi:10.2174/15672051179574532CrossRefGoogle Scholar
Van Oijen, M., Jan de Jong, F., Hofman, A., Koudstaal, P. J. and Bretelera, M. M. B (2007). Subjective memory complaints, education, and risk of Alzheimer’s disease. Alzheimer’s & Dementia, 3, 9297. doi:10.1016/j.jalz.2007.01.011CrossRefGoogle ScholarPubMed
Vaughan, L., Erickson, K. I., Espeland, M. A., Smith, C., Tindle, H. A. and Rapp, S. R. (2014). Concurrent and longitudinal relationships between cognitive activity, cognitive performance, and brain volume in older adult women. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 69, 826836. doi:10.1093/geronb/gbu109CrossRefGoogle ScholarPubMed
Verghese, J.et al. (2006). Leisure activities and the risk of amnestic mild cognitive impairment in the elderly. Neurology, 66, 821827. doi:10.1212/01.wnl.0000202520.68987.48CrossRefGoogle ScholarPubMed
Wechsler, D. (Ed.) (1988). WAIS-R: Wechsler Adult Intelligence Scale- Revised. Oxford: Psychological Corporation.Google Scholar
Wilson, R. S., Scherr, P. A., Schneider, J. A., Tang, Y. and Bennett, D. A. (2007). Relation of cognitive activity to risk of developing Alzheimer disease. Neurology, 69, 19111920. doi:10.1212/01.wnl.0000271087.67782CrossRefGoogle ScholarPubMed