Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-22T18:45:42.581Z Has data issue: false hasContentIssue false

Cognitive impairment and vitamin B12: a review

Published online by Cambridge University Press:  06 January 2012

Eileen Moore*
Affiliation:
Department of Psychiatry, The University of Melbourne, Department of Surgery, The Geelong Hospital, Barwon Health, Geelong, Victoria, Australia
Alastair Mander
Affiliation:
Barwon Health, Geelong, Victoria, Australia
David Ames
Affiliation:
National Ageing Research Institute (NARI), The University of Melbourne, Royal Melbourne Hospital, Melbourne, Victoria, Australia
Ross Carne
Affiliation:
Geelong Clinical School, Deakin University, Department of Neurosciences, The Geelong Hospital, Barwon Health, Geelong, Victoria, Australia
Kerrie Sanders
Affiliation:
NorthWest Academic Centre, The University of Melbourne, Department of Medicine, Western Health, St Albans, Victoria, Australia
David Watters
Affiliation:
Department of Surgery, Deakin University, The Geelong Hospital, Barwon Health, Geelong, Victoria, Australia
*
Correspondence should be addressed to: Eileen Mary Moore, Department of Surgery, Barwon Health, The Geelong Hospital, PO Box 281, Geelong, Victoria 3220, Australia. Phone: +61 352267899; Fax: +61 352267019. Email: [email protected], [email protected].
Get access

Abstract

Background: This review examines the associations between low vitamin B12 levels, neurodegenerative disease, and cognitive impairment. The potential impact of comorbidities and medications associated with vitamin B12 derangements were also investigated. In addition, we reviewed the evidence as to whether vitamin B12 therapy is efficacious for cognitive impairment and dementia.

Methods: A systematic literature search identified 43 studies investigating the association of vitamin B12 and cognitive impairment or dementia. Seventeen studies reported on the efficacy of vitamin B12 therapy for these conditions.

Results: Vitamin B12 levels in the subclinical low-normal range (<250 ρmol/L) are associated with Alzheimer's disease, vascular dementia, and Parkinson's disease. Vegetarianism and metformin use contribute to depressed vitamin B12 levels and may independently increase the risk for cognitive impairment. Vitamin B12 deficiency (<150 ρmol/L) is associated with cognitive impairment. Vitamin B12 supplements administered orally or parenterally at high dose (1 mg daily) were effective in correcting biochemical deficiency, but improved cognition only in patients with pre-existing vitamin B12 deficiency (serum vitamin B12 levels <150 ρmol/L or serum homocysteine levels >19.9 μmol/L).

Conclusion: Low serum vitamin B12 levels are associated with neurodegenerative disease and cognitive impairment. There is a small subset of dementias that are reversible with vitamin B12 therapy and this treatment is inexpensive and safe. Vitamin B12 therapy does not improve cognition in patients without pre-existing deficiency. There is a need for large, well-resourced clinical trials to close the gaps in our current understanding of the nature of the associations of vitamin B12 insufficiency and neurodegenerative disease.

Type
Review Article
Copyright
Copyright © International Psychogeriatric Association 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaron, S., Kumar, S., Vijayan, J., Jacob, J., Alexander, M. and Gnanamuthu, C. (2005). Clinical and laboratory features and response to treatment in patients presenting with vitamin B12 deficiency-related neurological syndromes. Neurology India, 53, 5559.Google ScholarPubMed
Abyad, A. (2002). Prevalence of vitamin B12 deficiency among demented patients and cognitive recovery with cobalamin replacement. Journal of Nutrition, Health and Aging, 6, 254260.Google ScholarPubMed
Adams, J. F., Clark, J. S., Ireland, J. T., Kesson, C. M. and Watson, W. S. (1983). Malabsorption of vitamin B12 and intrinsic factor secretion during biguanide therapy. Diabetologia, 24, 1618.CrossRefGoogle ScholarPubMed
Aisen, P. S. et al. (2008). High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial. JAMA, 300, 17741783. doi: 10.1001/jama.300.15.1774.CrossRefGoogle ScholarPubMed
Akdal, G., Yener, G. G. and Kurt, P. (2008). Treatment responsive executive and behavioral dysfunction associated with vitamin B12 deficiency. Neurocase, 14, 147150. doi: 10.1080/13554790802032242.CrossRefGoogle ScholarPubMed
Alzheimer's Association (2011). 2011 Alzheimer's disease – facts and figures. Alzheimer's and Dementia, 7, 208244.CrossRefGoogle Scholar
Ames, D., Burns, A. and O'Brien, J. (2010). Dementia, 4th edn. London: Edward Arnold (Publishers) Limited.CrossRefGoogle Scholar
Andres, E. et al. (2004). Vitamin B12 (cobalamin) deficiency in elderly patients. Canadian Medical Association Journal, 171, 251259. doi: 10.1503/cmaj.1031155.CrossRefGoogle ScholarPubMed
Annerbo, S., Kivipelto, M. and Lokk, J. (2009). A prospective study on the development of Alzheimer's disease with regard to thyroid-stimulating hormone and homocysteine. Dementia and Geriatric Cognitive Disorders, 28, 275280. doi: 10.1159/000242439.CrossRefGoogle ScholarPubMed
Bauman, W. A., Shaw, S., Jayatilleke, E., Spungen, A. M. and Herbert, V. (2000). Increased intake of calcium reverses vitamin B12 malabsorption induced by metformin. Diabetes Care, 23, 12271231.CrossRefGoogle ScholarPubMed
Bell, D. S. (2010). Metformin-induced vitamin B12 deficiency presenting as a peripheral neuropathy. Southern Medical Journal, 103, 265267.CrossRefGoogle ScholarPubMed
Brady, C. B. et al. (2009). Homocysteine lowering and cognition in CKD: the Veterans Affairs homocysteine study. American Journal of Kidney Diseases, 54, 440449. doi: 10.1053/j.ajkd.2009.05.013.CrossRefGoogle ScholarPubMed
Brewerton, D. A. and Asher, R. A. (1952). The maintenance therapy of pernicious anaemia with vitamin B12. Lancet, 6728, 265266.CrossRefGoogle Scholar
Chen, Y. et al. (2009). Antidiabetic drug metformin (GlucophageR) increases biogenesis of Alzheimer's amyloid peptides via up-regulating BACE1 transcription. Proceedings of the National Academy of Sciences of the United States of America, 106, 39073912. doi: 10.1073/pnas.0807991106.CrossRefGoogle ScholarPubMed
Clarfield, A. M. (2003). The decreasing prevalence of reversible dementias: an updated meta-analysis. Archives of Internal Medicine, 163, 22192229.CrossRefGoogle ScholarPubMed
Clarke, R., Smith, A. D., Jobst, K. A., Refsum, H., Sutton, L. and Ueland, P. M. (1998). Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Archives of Neurology, 55, 14491455.CrossRefGoogle ScholarPubMed
Clarke, R. et al. (2007). Low vitamin B-12 status and risk of cognitive decline in older adults. American Journal of Clinical Nutrition, 86, 13841391.CrossRefGoogle ScholarPubMed
Cunha, U. G. et al. (1995). Vitamin B12 deficiency and dementia. International Psychogeriatrics, 7, 8588.CrossRefGoogle ScholarPubMed
de Lau, L. M. L., Smith, A. D., Refsum, H., Johnston, C. and Breteler, M. M. B. (2009). Plasma vitamin B12 status and cerebral white-matter lesions. Journal of Neurology, Neurosurgery and Psychiatry, 80, 149157. doi: 10.1136/jnnp.2008.149286.CrossRefGoogle ScholarPubMed
Di Carlo, A. et al. (2002). Incidence of dementia, Alzheimer's disease, and vascular dementia in Italy. The ILSA study. Journal of the American Geriatrics Society, 50, 4148.CrossRefGoogle ScholarPubMed
Dogan, M. et al. (2009). Psychotic disorder and extrapyramidal symptoms associated with vitamin B12 and folate deficiency. Journal of Tropical Pediatrics, 55, 205207. doi: 10.1093/tropej/fmn112.CrossRefGoogle ScholarPubMed
Elias, M. F. et al. (2005). Homocysteine and cognitive performance in the Framingham offspring study: age is important. American Journal of Epidemiology, 7, 644653. doi: 10.1093/aje/kwi259.CrossRefGoogle Scholar
Elias, M. F. et al. (2006). Homocysteine, folate, and vitamins B6 and B12 blood levels in relation to cognitive performance: the Maine–Syracuse study. Psychosomatic Medicine, 68, 547554. doi: 10.1097/01.psy.0000221380.92521.51.CrossRefGoogle ScholarPubMed
Eussen, S. J. et al. (2006). Effect of oral vitamin B-12 with or without folic acid on cognitive function in older people with mild vitamin B-12 deficiency: a randomized, placebo-controlled trial. American Journal of Clinical Nutrition, 84, 361370.CrossRefGoogle ScholarPubMed
Ferri, C. P. et al. (2005). Global prevalence of dementia: a Delphi consensus study. Lancet, 9503, 21122117.CrossRefGoogle Scholar
Figlin, E. et al. (2003). High prevalences of vitamin B12 and folic acid deficiency in elderly subjects in Israel. British Journal of Haematology, 123, 696701.CrossRefGoogle ScholarPubMed
Folstein, M. F., Folstein, S. E. and McHugh, P. R. (1975). “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198.CrossRefGoogle ScholarPubMed
Gadoth, N., Figlin, E., Chetrit, A., Sela, B. A. and Seligsohn, U. (2006). The neurology of cobalamin deficiency in an elderly population in Israel. Journal of Neurology, 253, 4550. doi: 10.1007/s00415-005-0919-4.CrossRefGoogle Scholar
Garcia, A., Paris-Pombo, A., Evans, L., Day, A. and Freedman, M. (2002). Is low-dose oral cobalamin enough to normalize cobalamin function in older people? Journal of the American Geriatrics Society, 50, 14011404.CrossRefGoogle ScholarPubMed
Gochard, A., Mondon, K., De Toffol, B. and Autret, A. (2009). Vitamin B12 deficiency and neurological disorders: a case report and literature review. Revue Neurologique, 165, 10951098.CrossRefGoogle Scholar
Gorgone, G. et al. (2009). Hyperhomocysteinemia in patients with epilepsy: does it play a role in the pathogenesis of brain atrophy? A preliminary report. Epilepsia, 50, 3336. doi: 10.1111/j.1528-1167.2008.01967.x.CrossRefGoogle ScholarPubMed
Herbert, V. (1988). Vitamin B-12: plant sources, requirements, and assay. American Journal of Clinical Nutrition, 48, 852858.CrossRefGoogle ScholarPubMed
Herbert, V. (1994). Staging vitamin B-12 (cobalamin) status in vegetarians. American Journal of Clinical Nutrition, 59, 1213S1222S.CrossRefGoogle ScholarPubMed
Hin, H. et al. (2006). Clinical relevance of low serum vitamin B12 concentrations in older people: the Banbury B12 study. Age and Ageing, 35, 416422. doi:10.1093/ageing/afl033.CrossRefGoogle ScholarPubMed
Hokin, B. D. and Butler, T. (1999). Cyanocobalamin (vitamin B-12) status in Seventh-Day Adventist ministers in Australia. American Journal of Clinical Nutrition, 70, 576578.CrossRefGoogle ScholarPubMed
Huemer, M. et al. (2006). Total homocysteine, folate, and cobalamin, and their relation to genetic polymorphisms, lifestyle and body mass index in healthy children and adolescents. Pediatric Research, 60, 764769. doi: 10.1203/01.pdr.0000246099.39469.18.CrossRefGoogle ScholarPubMed
Hvas, A. M., Juul, S., Lauritzen, L., Nexo, E. and Ellegaard, J. (2004). No effect of vitamin B-12 treatment on cognitive function and depression: a randomized placebo controlled study. Journal of Affective Disorders, 81, 269273. doi: 10.1016/S0165-0327(03)00169-1.CrossRefGoogle ScholarPubMed
Jorm, A. F., Korten, A. E. and Henderson, A. S. (1987). The prevalence of dementia: a quantitative integration of the literature. Acta Psychiatrica Scandinavica, 76, 465479.CrossRefGoogle ScholarPubMed
Josephs, K. A. et al. (2009). Rapidly progressive neurodegenerative dementias. Archives of Neurology, 66, 201207.CrossRefGoogle ScholarPubMed
Kado, D. M. et al. (2005). Homocysteine versus the vitamins folate, B6, and B12 as predictors of cognitive function and decline in older high-functioning adults: MacArthur studies of successful aging. American Journal of Medicine, 118, 161167. doi:10.1016/j.amjmed.2004.08.019.CrossRefGoogle ScholarPubMed
Kalita, J. and Misra, U. K. (2008). Vitamin B12 deficiency neurological syndromes: correlation of clinical, MRI and cognitive evoked potential. Journal of Neurology, 255, 353359. doi: 10.1007/s00415-008-0660-x.CrossRefGoogle ScholarPubMed
Kaptan, K. et al. (2000). Helicobacter pylori – is it a novel causative agent in vitamin B12 deficiency? Archives of Internal Medicine, 160, 13491353.CrossRefGoogle ScholarPubMed
Kim, J. M. et al. (2008a). Changes in folate, vitamin B12 and homocysteine associated with incident dementia. Journal of Neurology, Neurosurgery and Psychiatry, 79, 864868. doi: 10.1136/jnnp.2007.131482.CrossRefGoogle ScholarPubMed
Kim, J. M., Stewart, R., Kim, S. W., Yang, S. J., Shin, I. S. and Yoon, J. S. (2008b). Predictive value of folate, vitamin B12 and homocysteine levels in late-life depression. British Journal of Psychiatry, 192, 268274. doi: 10.1192/bjp.bp.107.039511.CrossRefGoogle ScholarPubMed
Koseoglu, E. and Karaman, Y. (2007). Relations between homocysteine, folate and vitamin B12 in vascular dementia and in Alzheimer disease. Clinical Biochemistry, 40, 859863. doi:10.1016/j.clinbiochem.2007.04.007.CrossRefGoogle ScholarPubMed
Kuo, S. C., Yeh, C. B., Yeh, Y. W. and Tzeng, N. S. (2009). Schizophrenia-like psychotic episode precipitated by cobalamin deficiency. General Hospital Psychiatry, 31, 586588. doi: 10.1016/j.genhosppsych.2009.02.003.CrossRefGoogle ScholarPubMed
Kwok, T., Lee, J., Lam, L. and Woo, J. (2008). Vitamin B(12) supplementation did not improve cognition but reduced delirium in demented patients with vitamin B(12) deficiency. Archives of Gerontology and Geriatrics, 46, 273282. doi: 10.1016/j.archger.2007.05.001.CrossRefGoogle Scholar
Lanska, D. J. (2009). Chapter 30: historical aspects of the major neurological vitamin deficiency disorders: the water-soluble B vitamins. Handbook of Clinical Neurology, 95, 445476.CrossRefGoogle Scholar
Lehmann, M., Regland, B., Blennow, K. and Gottfries, C. G. (2003). Vitamin B12-B6-folate treatment improves blood–brain barrier function in patients with hyperhomocysteinaemia and mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 16, 145150. doi: 10.1159/000071002.CrossRefGoogle ScholarPubMed
Lipton, S. A. et al. (1997). Neurotoxicity associated with dual actions of homocysteine at the N-methyl-D-aspartate receptor. Proceedings of the National Academy of Sciences of the United States of America, 94, 59235928.CrossRefGoogle ScholarPubMed
Loikas, S. et al. (2007). Vitamin B12 deficiency in the aged: a population-based study. Age and Ageing, 36, 177183. doi: 10.1093/ageing/afl150.CrossRefGoogle ScholarPubMed
Malaguarnera, M., Ferri, R., Bella, R., Alagona, G., Carnemolla, A. and Pennisi, G. (2004). Homocysteine, vitamin B12 and folate in vascular dementia and in Alzheimer disease. Clinical Chemisty and Laboratory Medicine, 42, 10321035. doi: 10.1515/CCLM.2004.208.Google ScholarPubMed
Martin, D. C., Francis, J., Protetch, J. and Huff, F. J. (1992). Time dependency of cognitive recovery with cobalamin replacement: report of a pilot study. Journal of the American Geriatrics Society, 40, 168172.CrossRefGoogle ScholarPubMed
McLean, E., de Benoist, B. and Allen, L. H. (2008). Review of the magnitude of folate and vitamin B12 deficiencies worldwide. Food and Nutrition Bulletin, 29, 3851.CrossRefGoogle ScholarPubMed
McMahon, J. A., Green, T. J., Skeaff, C. M., Knight, R. G., Mann, J. I. and Williams, S. M. (2006). A controlled trial of homocysteine lowering and cognitive performance. The New England Journal of Medicine, 354, 27642772.CrossRefGoogle ScholarPubMed
Miller, J. W., Garrod, M. G., Allen, L. H., Haan, M. N. and Green, R. (2009). Metabolic evidence of vitamin B-12 deficiency, including high homocysteine and methylmalonic acid and low holotranscobalamin, is more pronounced in older adults with elevated plasma folate. American Journal of Clinical Nutrition, 90, 15861592.CrossRefGoogle ScholarPubMed
Myles, P. S., Chan, M. T., Leslie, K., Peyton, P., Paech, M. and Forbes, A. (2008). Effect of nitrous oxide on plasma homocysteine and folate in patients undergoing major surgery. British Journal of Anaesthesia, 100, 780786. doi: 10.1093/bja/aen085.CrossRefGoogle ScholarPubMed
Nilsson, K., Gustafson, L. and Hultberg, B. (2001). Improvement of cognitive functions after cobalamin/folate supplementation in elderly patients with dementia and elevated plasma homocysteine. International Journal of Geriatric Psychiatry, 16, 609614. doi: 10.1002/gps.388.CrossRefGoogle ScholarPubMed
Okun, J. G. et al. (2002). Neurodegeneration in methylmalonic aciduria involves inhibition of complex II and the tricarboxylic acid cycle, and synergistically acting excitotoxicity. Journal of Biological Chemistry, 277, 1467414680. doi: 10.1074/jbc.M200997200.CrossRefGoogle ScholarPubMed
Oostenbrug, L. E., van Dullemen, H. M., te Meerman, G. J., Jansen, P. L. and Kleibeuker, J. H. (2006). Clinical outcome of Crohn's disease according to the Vienna classification: disease location is a useful predictor of disease course. European Journal of Gastroenterology and Hepatology, 18, 255261.CrossRefGoogle Scholar
Pasca, S. P. et al. (2008). One carbon metabolism disturbances and the C667T MTHFR gene polymorphism in children with autism spectrum disorders. Journal of Cellular and Molecular Medicine, 13, 42294238. doi:10.1111/j.1582-4934.2008.00463.x.CrossRefGoogle Scholar
Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G. and Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Archives of Neurology, 56, 303308.CrossRefGoogle ScholarPubMed
Pfeiffer, C. M., Caudill, S. P., Gunter, E. W., Osterloh, J. and Sampson, E. J. (2005). Biochemical indicators of B vitamin status in the US population after folic acid fortification: results from the National Health and Nutrition Examination Survey 1999–2000. American Journal of Clinical Nutrition, 82, 442450.CrossRefGoogle ScholarPubMed
Profenno, L. A., Porsteinsson, A. P. and Faraone, S. V. (2009). Meta-analysis of Alzheimer's disease risk with obesity, diabetes, and related disorders. Biological Psychiatry, 67, 505512. doi: 10.1016/j.biopsych.2009.02.013.CrossRefGoogle ScholarPubMed
Puntambekar, P., Basha, M. M., Zak, I. T. and Madhavan, R. (2009). Rare sensory and autonomic disturbances associated with vitamin B12 deficiency. Journal of Neurological Sciences, 287, 285287. doi:10.1016/j.jns.2009.07.030.CrossRefGoogle ScholarPubMed
Ravaglia, G. et al. (2003). Homocysteine and cognitive function in healthy elderly community elderly in Italy. American Journal of Clinical Nutrition, 77, 668673.CrossRefGoogle ScholarPubMed
Ray, J. G., Goodman, J., O'Mahoney, P. R., Mamdani, M. M. and Jiang, D. (2008). High rate of maternal vitamin B12 deficiency nearly a decade after Canadian folic acid flour fortification. Quarterly Journal of Medicine, 101, 475477. doi: 10.1093/qjmed/hcn031.CrossRefGoogle ScholarPubMed
Redeen, S., Ryberg, A., Petersson, F., Eriksson, O., Nagga, K. and Borch, K. (2009). Homocysteine levels in chronic gastritis and other conditions: relations to incident cardiovascular disease and dementia. Digestive Diseases and Sciences, 55, 351358. doi: 10.1007/s10620-009-0761-0.CrossRefGoogle ScholarPubMed
Seal, E. C., Metz, J., Flicker, L. and Melny, J. (2002). A randomized, double-blind, placebo-controlled study of oral vitamin B12 supplementation in older patients with subnormal or borderline serum vitamin B12 concentrations. Journal of the American Geriatric Society, 50, 146151.CrossRefGoogle ScholarPubMed
Selhub, J., Morris, M. S., Jacques, P. F. and Rosenberg, I. H. (2009). Folate-vitamin B-12 interaction in relation to cognitive impairment, anemia, and biochemical indicators of vitamin B-12 deficiency. American Journal of Clinical Nutrition, 89, 702706.CrossRefGoogle ScholarPubMed
Serot, J. M. et al. (2005). Homocysteine and methylmalonic acid concentrations in cerebrospinal fluid: relation with age and Alzheimer's disease. Journal of Neurology, Neurosurgery and Psychiatry, 76, 15851587. doi: 10.1136/jnnp.2004.056119.CrossRefGoogle ScholarPubMed
Siuda, J. et al. (2009). From mild cognitive impairment to Alzheimer's disease – influence of homocysteine, vitamin B12 and folate on cognition over time: results from one-year follow-up. Polish Journal of Nuerology and Neurosurgery, 43, 321329.Google ScholarPubMed
Stott, D. J. et al. (2005). Randomized controlled trial of homocysteine-lowering vitamin treatment in elderly patients with vascular disease. American Journal of Clinical Nutrition, 82, 13201326.CrossRefGoogle ScholarPubMed
Stuerenburg, H. J., Mueller-Thomsen, T. and Methner, A. (2004). Vitamin B12 plasma concentrations in Alzheimer disease. Neuroendocrinology Letters, 25, 176177.Google ScholarPubMed
Tanaka, T. et al. (2009). Genome-wide association study of vitamin B6, vitamin B12, folate, and homocysteine blood concentrations. American Journal of Human Genetics, 84, 477482. doi: 10.1016/j.ajhg.2009.02.011.CrossRefGoogle ScholarPubMed
Tomkin, G. H. (1972). Metformin and B12 malabsorption. Annals of Internal Medicine, 76, 668.CrossRefGoogle Scholar
Triantafyllou, N. I. et al. (2008). Folate and vitamin B12 levels in levodopa-treated Parkinson's disease patients: their relationship to clinical manifestations, mood and cognition. Parkinsonism and Related Disorders, 14, 321325. doi: 10.1016/j.parkreldis.2007.10.002.CrossRefGoogle ScholarPubMed
van Asselt, D. Z. et al. (1998). Role of cobalamin intake and atrophic gastritis in mild cobalamin deficiency in older Dutch subjects. American Journal of Clinical Nutrition, 68, 328334.CrossRefGoogle ScholarPubMed
van Asselt, D. Z. et al. (2001). Cobalamin supplementation improves cognitive and cerebral function in older, cobalamin-deficient persons. The Journal of Gerontology, Series A, Biological Sciences and Medical Sciences, 56, 775779.CrossRefGoogle ScholarPubMed
van Uffelen, J. G., Chinapaw, M. J., van Mechelen, W. and Hopman-Rock, M. (2008). Walking or vitamin B for cognition in older adults with mild cognitive impairment? A randomised controlled trial. British Journal of Sports Medicine, 42, 344351. doi: 10.1136/bjsm.2007.044735.CrossRefGoogle ScholarPubMed
Vogiatzoglou, et al. (2008). Vitamin B12 status and rate of brain volume loss in community-dwelling elderly. Neurology, 71, 826832.CrossRefGoogle ScholarPubMed
Wang, H. X., Wahlin, A., Basun, H., Fastbom, J., Winblad, B. and Fratiglioni, L. (2001). Vitamin B(12) and folate in relation to the development of Alzheimer's disease. Neurology, 56, 11881194.CrossRefGoogle Scholar
Wang, Y. H. et al. (2009). An investigation of vitamin B12 deficiency in elderly inpatients in neurology department. Neuroscience Bulletin, 25, 209215. doi: 10.1007/s12264-009-0224-9.CrossRefGoogle ScholarPubMed
Whyte, E. M. et al. (2002). Cognitive and behavioral correlates of low vitamin B12 levels in elderly patients with progressive dementia. American Journal of Geriatric Psychiatry, 10, 321327.CrossRefGoogle ScholarPubMed
Wile, D. J. and Toth, C. (2010). Association of metformin, elevated homocysteine, and methylmalonic acid levels and clinically worsened diabetic peripheral neuropathy. Diabetes Care, 33, 156161. doi: 10.2337/dc09-0606.CrossRefGoogle ScholarPubMed
Willem, M. et al. (2006). Control of peripheral nerve myelination by the beta-secretase BACE1. Science, 314, 664666. doi: 10.1126/science.1132341.CrossRefGoogle ScholarPubMed
Wimo, A. and Prince, M. (2010). World Alzheimer Report 2010 – The Global Economic Impact of Dementia. Stockholm: Karolinska Institutet.Google Scholar
Wright, C. B., Lee, H. S., Paik, M. C, Stabler, S. P., Allen, R. H. and Sacco, R. L. (2004). Total homocysteine and cognition in a tri-ethnic cohort: the northern Manhattan study. Neurology, 27, 254260.CrossRefGoogle Scholar