We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
Alexandra Touroutoglou
Affiliation:
Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USAAthinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USAAlzheimer’s Disease Research Center, Massachusetts General Hospital, Charlestown, MA, USA
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Article purchase
Temporarily unavailable
References
Borelli, W. V., Leal-Conceição, E., Andrade, M. A., Esper, N. B., Feltes, P. K., Soder, R. B., Matushita, C. S., Hartmann, L. M., Radaelli, G., Schilling, L. P., Moriguchi-Jeckel, C., Marques da Silva, A. M., Portuguez, M. W., Franco, A. R., & da Costa, J. C. (2021). Increased glucose activity in subgenual anterior cingulate and hippocampus of high performing older adults, despite amyloid burden. Journal of Alzheimer’s Disease, 81(4), 1419–1428. https://doi.org/10.3233/JAD-210063Google Scholar
Borelli, W. V., Schilling, L. P., Radaelli, G., Ferreira, L. B., Pisani, L., Portuguez, M. W., & da Costa, J. C. (2018). Neurobiological findings associated with high cognitive performance in older adults: A systematic review. International Psychogeriatrics, 30(12), 1813–1825. https://doi.org/10.1017/S1041610218000431Google Scholar
Buchanan, C. R., Muñoz Maniega, S., Valdés Hernández, M. C., Ballerini, L., Barclay, G., Taylor, A. M., Russ, T. C., Tucker-Drob, E. M., Wardlaw, J. M., Deary, I. J., Bastin, M. E., & Cox, S. R. (2021). Comparison of structural MRI brain measures between 1.5 and 3 T: Data from the Lothian Birth Cohort 1936. Human Brain Mapping, 42(12), 3905–3921. https://doi.org/10.1002/hbm.25473Google Scholar
Dang, C., Harrington, K. D., Lim, Y. Y., Ames, D., Hassenstab, J., Laws, S. M., Yassi, N., Hickey, M., Rainey-Smith, S. R., Robertson, J., Rowe, C. C., Sohrabi, H. R., Salvado, O., Weinborn, M., Villemagne, V. L., Masters, C. L., Maruff, P., & AIBL Research Group (2019). Superior memory reduces 8-year risk of mild cognitive impairment and dementia but not amyloid β-associated cognitive decline in older adults. Archives of Clinical Neuropsychology, 34(5), 585–598. https://doi.org/10.1093/arclin/acy078Google Scholar
Gefen, T., Shaw, E., Whitney, K., Martersteck, A., Stratton, J., Rademaker, A., Weintraub, S., Mesulam, M.-M., & Rogalski, E. (2014). Longitudinal neuropsychological performance of cognitive superagers. Journal of the American Geriatrics Society, 62(8), 1598–1600. https://doi.org/10.1111/jgs.12967Google Scholar
Harrison, T. M., Maass, A., Baker, S. L., & Jagust, W. J. (2018). Brain morphology, cognition, and β-amyloid in older adults with superior memory performance. Neurobiology of Aging, 67, 162–170. https://doi.org/10.1016/j.neurobiolaging.2018.03.024Google Scholar
Harrison, T. M., Weintraub, S., Mesulam, M.-M., & Rogalski, E. (2012). Superior memory and higher cortical volumes in unusually successful cognitive aging. Journal of the International Neuropsychological Society, 18(6), 1081–1085. https://doi.org/10.1017/S1355617712000847Google Scholar
Josefsson, M., Sundström, A., Pudas, S., Adolfsson, A. N., Nyberg, L., & Adolfsson, R. (2023). Memory profiles predict dementia over 23-28 years in normal but not successful aging. International Psychogeriatrics, 35(7), 351–359. https://doi.org/10.1017/S1041610219001844Google Scholar
Katsumi, Y., Andreano, J. M., Barrett, L. F., Dickerson, B. C., & Touroutoglou, A. (2021). Greater neural differentiation in the ventral visual cortex is associated with youthful memory in superaging. Cerebral Cortex, 31(11), 5275–5287. https://doi.org/10.1093/cercor/bhab157Google Scholar
Katsumi, Y., Wong, B., Cavallari, M., Fong, T. G., Alsop, D. C., Andreano, J. M., Carvalho, N., Brickhouse, M., Jones, R., Libermann, T. A., Marcantonio, E. R., Schmitt, E., Shafi, M. M., Pascual-Leone, A., Travison, T., Barrett, L. F., Inouye, S. K., Dickerson, B. C., & Touroutoglou, A. (2022). Structural integrity of the anterior mid-cingulate cortex contributes to resilience to delirium in Superaging. Brain Communications, 4(4), fcac163. https://doi.org/10.1093/braincomms/fcac163Google Scholar
Lipnicki, D. M., Crawford, J. D., Dutta, R., Thalamuthu, A., Kochan, N. A., Andrews, G., Lima-Costa, M. F., Castro-Costa, E., Brayne, C., Matthews, F. E., Stephan, B. C. M., Lipton, R. B., Katz, M. J., Ritchie, K., Scali, J., Ancelin, M.-L., Scarmeas, N., Yannakoulia, M., Dardiotis, E., … Cohort Studies of Memory in an International Consortium (COSMIC) (2017). Age-related cognitive decline and associations with sex, education and apolipoprotein E genotype across ethnocultural groups and geographic regions: A collaborative cohort study. PLOS Medicine, 14(3), e1002261. https://doi.org/10.1371/journal.pmed.1002261Google Scholar
Maccora, J., Peters, R., & Anstey, K. J. (2021). Gender differences in superior-memory superagers and associated factors in an Australian cohort. Journal of Applied Gerontology, 40(4), 433–442. https://doi.org/10.1177/0733464820902943Google Scholar
Maher, A. C., Makowski-Woidan, B., Kuang, A., Zhang, H., Weintraub, S., Mesulam, M. M., & Rogalski, E. (2022). Neuropsychological profiles of older adults with superior versus average episodic memory: The Northwestern “SuperAger” cohort. Journal of the International Neuropsychological Society, 28(6), 563–573. https://doi.org/10.1017/S1355617721000837Google Scholar
Nassif, C., Kawles, A., Ayala, I., Minogue, G., Gill, N. P., Shepard, R. A., Zouridakis, A., Keszycki, R., Zhang, H., Mao, Q., Flanagan, M. E., Bigio, E. H., Mesulam, M.-M., Rogalski, E., Geula, C., & Gefen, T. (2022). Integrity of neuronal size in the entorhinal cortex is a biological substrate of exceptional cognitive aging. Journal of Neuroscience, 42(45), 8587–8594. https://doi.org/10.1523/JNEUROSCI.0679-22.2022Google Scholar
Pezzoli, S., Giorgio, J., Martersteck, A., Dobyns, L., Harrison, T. M., & Jagust, W. J. (2023). Successful cognitive aging is associated with thicker anterior cingulate cortex and lower tau deposition compared to typical aging. Alzheimer’s & Dementia. https://doi.org/10.1002/alz.13438Google Scholar
Powell, A., Lam, B. C. P., Foxe, D., Close, J. C. T., Sachdev, P. S., & Brodaty, H. (2023). Frequency of cognitive “super-aging” in three Australian samples using different diagnostic criteria. International Psychogeriatrics, 1–17. https://doi.org/10.1017/S1041610223000935Google Scholar
Spencer, B. E., Banks, S. J., Dale, A. M., Brewer, J. B., Makowski-Woidan, B., Weintraub, S., Mesulam, M.-M., Geula, C., & Rogalski, E. (2022). Alzheimer’s polygenic hazard score in Superagers: SuperGenes or SuperResilience?Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 8(1), e12321. https://doi.org/10.1002/trc2.12321Google Scholar
Sun, F. W., Stepanovic, M. R., Andreano, J., Barrett, L. F., Touroutoglou, A., & Dickerson, B. C. (2016). Youthful brains in older adults: Preserved neuroanatomy in the default mode and salience networks contributes to youthful memory in superaging. Journal of Neuroscience, 36(37), 9659–9668. https://doi.org/10.1523/JNEUROSCI.1492-16.2016Google Scholar
Sutin, A. R., Luchetti, M., Aschwanden, D., Zhu, X., Stephan, Y., & Terracciano, A. (2023). Loneliness and risk of all-cause, Alzheimer’s, vascular, and frontotemporal dementia: A prospective study of 492,322 individuals over 15 years. International Psychogeriatrics, 35(6), 283–292. https://doi.org/10.1017/S1041610222001028Google Scholar
Zhang, J., Andreano, J. M., Dickerson, B. C., Touroutoglou, A., & Barrett, L. F. (2019). Stronger functional connectivity in the default mode and salience networks is associated with youthful memory in superaging. Cerebral Cortex, 30(1), 72–84. https://doi.org/10.1093/cercor/bhz071Google Scholar