Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-02T17:18:09.190Z Has data issue: false hasContentIssue false

The effect of age on the FCSRT-IR and temporary visual memory binding

Published online by Cambridge University Press:  12 September 2017

Lewis Killin*
Affiliation:
Department of Psychology, Human Cognitive Neuroscience, University of Edinburgh, Edinburgh, UK Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
Sharon Abrahams
Affiliation:
Department of Psychology, Human Cognitive Neuroscience, University of Edinburgh, Edinburgh, UK Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
Mario A. Parra
Affiliation:
Department of Psychology, Human Cognitive Neuroscience, University of Edinburgh, Edinburgh, UK Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK School of Social Sciences, Psychology, University Heriot-Watt, Edinburgh, UK Autonomous University of the Caribbean, Barranquilla, Colombia
Sergio Della Sala
Affiliation:
Department of Psychology, Human Cognitive Neuroscience, University of Edinburgh, Edinburgh, UK Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
*
Correspondence should be addressed to: Lewis Killin, Alzheimer Scotland Dementia Research Centre, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK. Phone: +44 131 537 3129. Email: [email protected]
Get access

Abstract

Background:

Cognitive markers of early Alzheimer's disease (AD) should be sensitive and specific to memory impairments that are not associated with healthy cognitive aging. In the present study, we investigated the effect of healthy cognitive aging on two proposed cognitive markers of AD: the Free and Cued Selective Reminding Task with Immediate Recall (FCSRT-IR) and a temporary visual memory binding (TMB) task.

Method:

Free recall and the cost of holding bound information in visual memory were compared between 24 younger and 24 older participants in a mixed, fully counterbalanced experiment.

Results:

A significant effect of age was observed on free recall in the FCSRT-IR only and not on the cost of binding in the TMB task.

Conclusions:

Of these two cognitive markers, the TMB task is more likely to be specific to memory impairments that are independent of age.

Type
Research Article
Copyright
Copyright © International Psychogeriatric Association 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, R. J., Baddeley, A. D. and Hitch, G. J. (2006). Is the binding of visual features in working memory resource-demanding? Journal of Experimental Psychology: General, 135, 298313.Google Scholar
Auriacombe, S., Helmer, C., Amieva, H., Berr, C., Dubois, B. and Dartigues, J. F. (2010). Validity of the free and cued selective reminding test in predicting dementia: the 3C study. Neurology, 74, 17601767. doi: 10.1212/WNL.0b013e3181df0959.Google Scholar
Baddeley, A., Allen, R. and Vargha-Khadem, F. (2010). Is the hippocampus necessary for visual and verbal binding in working memory? Neuropsychologia, 48, 10891095.Google Scholar
Balota, D. A., Dolan, P. O. and Duchek, J. M. (2000). Memory changes in healthy older adults. In Tulving, E. and Craik, F. I. M. (eds.), The Oxford Handbook of Memory (pp. 395409). Oxford: Oxford University Press.Google Scholar
Bastin, C. and Van der Linden, M. (2005). The effects of aging on the recognition of different types of associations. Experimental Aging Research, 32, 6177.Google Scholar
Bondi, M. W. et al. (2003). Neuropsychological deficits associated with Alzheimer's disease in the very-old: discrepancies in raw vs. standardized scores. Journal of the International Neuropsychological Society, 9, 783795.Google Scholar
Brockmole, J. R. and Logie, R. H. (2013). Age-related change in visual working memory: a study of 55,753 participants aged 8–75. Frontiers in Psychology, 4, 103389.Google Scholar
Brockmole, J. R., Parra, M. A., Della Sala, S. and Logie, R. (2008). Do binding deficits account for age-related decline in visual working memory? Psychonomic Bulletin & Review, 15, 543547. doi: 10.3758/PBR.15.3.543.Google Scholar
Brown, L. A. and Brockmole, J. R. (2010). The role of attention in binding visual features in working memory: evidence from cognitive ageing. Quarterly Journal of Experimental Psychology, 63, 20672079.Google Scholar
Buckner, R. L. (2004). Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron, 44, 195208. doi: http://dx.doi.org/10.1016/j.neuron.2004.09.006.Google Scholar
Carlesimo, G. A., Perri, R. and Caltagirone, C. (2011). Category cued recall following controlled encoding as a neuropsychological tool in the diagnosis of Alzheimer's disease: a review of the evidence. Neuropsychology Review, 21, 5465.Google Scholar
Clarke, A. and Tyler, L. K. (2014). Object-specific semantic coding in human perirhinal cortex. The Journal of Neuroscience, 34, 47664775.Google Scholar
Craik, F. I. and McDowd, J. M. (1987). Age differences in recall and recognition. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 474479.Google Scholar
Danckert, S. L. and Craik, F. I. M. (2013). Does aging affect recall more than recognition memory? Psychology and Aging, 28, 902909. doi: 10.1037/a0033263.Google Scholar
Davachi, L. (2006). Item, context and relational episodic encoding in humans. Current Opinion in Neurobiology, 16, 693700.Google Scholar
Della Sala, S., Kozlova, I., Stamate, A. and Parra, M. A. (2016). A transcultural cognitive marker of Alzheimer's Disease. International Journal of Geriatric Psychiatry. doi: 10.1002/gps.4610. Retrieved from PMID: 27805729.Google Scholar
Della Sala, S., Parra, M. A., Fabi, K., Luzzi, S. and Abrahams, S. (2012). Short-term memory binding is impaired in AD but not in non-AD dementias. Neuropsychologia, 50, 833840. doi: 10.1016/j.neuropsychologia.2012.01.018.Google Scholar
Didic, M. et al. (2011). Which memory system is impaired first in Alzheimer's disease?. Journal of Alzheimer's Disease, 27, 1122.Google Scholar
Dubois, B. et al. (2007). Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. Lancet Neurology, 6, 734746. doi: 10.1016/S1474-4422(07)70178-3.Google Scholar
Frasson, P. et al. (2011). Free and cued selective reminding test: an Italian normative study. Neurological Sciences, 32, 10571062. doi: 10.1007/s10072-011-0607-3.CrossRefGoogle ScholarPubMed
Gainotti, G., Quaranta, D., Vita, M. G. and Marra, C. (2014). Neuropsychological predictors of conversion from mild cognitive impairment to Alzheimer's disease. Journal of Alzheimer's Disease, 38, 481495.Google Scholar
Grober, E. and Buschke, H. (1987). Genuine memory deficits in dementia. Developmental Neuropsychology, 3, 1336.Google Scholar
Grober, E. and Kawas, C. (1997). Learning and retention in preclinical and early Alzheimer's disease. Psychology and Aging, 12, 183188. doi: 10.1037/0882-7974.12.1.183.Google Scholar
Grober, E., Buschke, H., Crystal, H., Bang, S. and Dresner, R. (1988). Screening for dementia by memory testing. Neurology, 38, 900903.CrossRefGoogle ScholarPubMed
Grober, E. et al. (2008a). Neuropsychological strategies for detecting early dementia. Journal of the International Neuropsychological Society, 14, 130142. doi: 10.1017/S1355617708080156.Google Scholar
Grober, E., Hall, C. B., Lipton, R. B., Zonderman, A. B., Resnick, S. M. and Kawas, C. (2008b). Memory impairment, executive dysfunction, and intellectual decline in preclinical Alzheimer's disease. Journal of the International Neuropsychological Society, 14, 266278. doi: 10.1017/S1355617708080302.Google Scholar
Grober, E., Lipton, R. B., Katz, M. and Sliwinski, M. (1998). Demographic influences on free and cued selective reminding performance in older persons. Journal of Clinical and Experimental Neuropsychology, 20, 221226.Google Scholar
Grober, E., Ocepek-Welikson, K. and Teresi, J. A. (2009). The free and cued selective reminding test: evidence of psychometric adequacy. Psychology Science Quaterly, 51, 266282.Google Scholar
Grober, E., Sanders, A. E., Hall, C. and Lipton, R. B. (2010). Free and cued selective reminding identifies very mild dementia in primary care. Alzheimer Disease & Associated Disorders, 24, 284290. doi: 10.1097/Wad.0b013e3181cfc78b.Google Scholar
Hsieh, S., Schubert, S., Hoon, C., Mioshi, E. and Hodges, J. R. (2013). Validation of the Addenbrooke's Cognitive Examination III in frontotemporal dementia and Alzheimer's disease. Dementia and Geriatric Cognitive Disorders, 36, 242250. doi: 10.1159/000351671.Google Scholar
Insausti, R. et al. (1998). MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar corticesAJNR, 19, 659671. Retrieved from PMID: 9576651.Google Scholar
Isella, V., Molteni, F., Mapelli, C. and Ferrarese, C. (2015). Short term memory for single surface features and bindings in ageing: a replication study. Brain and Cognition, 96, 3842.Google Scholar
Ivanoiu, A. et al. (2005). Memory evaluation with a new cued recall test in patients with mild cognitive impairment and Alzheimer's disease. Journal of Neurology, 252, 4755. doi: 10.1007/s00415-005-0597-2.Google Scholar
Ivnik, R. J., Smith, G. E., Lucas, J. A., Tangalos, E. G., Kokmen, E. and Petersen, R. C. (1997). Free and cued selective reminding test: MOANS norms. Journal of Clinical and Experimental Neuropsychology, 19, 676691. doi: 10.1080/01688639708403753.CrossRefGoogle ScholarPubMed
Juottonen, K. et al. (1998). Volumes of the entorhinal and perirhinal cortices in Alzheimer's disease. Neurobiology of Aging, 19, 1522. Retrieved from PMID: 9562498.CrossRefGoogle ScholarPubMed
Lekeu, F. et al. (2003). Brain correlates of performance in a free/cued recall task with semantic encoding in Alzheimer disease. Alzheimer Disease and Associated Disorders, 17, 3545.Google Scholar
Lemos, R., Duro, D., Simões, M. R. and Santana, I. (2014). The free and cued selective reminding test distinguishes frontotemporal dementia from Alzheimer's disease. Archives of Clinical Neuropsychology, 29, 670679.Google Scholar
Mayes, A., Montaldi, D. and Migo, E. (2007). Associative memory and the medial temporal lobes. Trends in Cognitive Sciences, 11, 126135.CrossRefGoogle ScholarPubMed
Mitchell, K. J., Johnson, M. K., Raye, C. L. and D'Esposito, M. (2000). fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Cognitive Brain Research, 10, 197206.Google Scholar
Mitrushina, M., Boone, K. B., Razani, J. and D'Elia, L. F. (2005). Handbook of Normative Mata for Neuropsychological Assessment. Oxford: Oxford University Press.Google Scholar
Moses, S. N. and Ryan, J. D. (2006). A comparison and evaluation of the predictions of relational and conjunctive accounts of hippocampal function. Hippocampus, 16, 4365.Google Scholar
Mungas, D., Reed, B. R., Farias, S. T. and DeCarli, C. (2009). Age and education effects on relationships of cognitive test scores with brain structure in demographically diverse older persons. Psychology and Aging, 24, 116128.CrossRefGoogle ScholarPubMed
Papp, K. V. et al. (2015). Free and cued memory in relation to biomarker-defined abnormalities in clinically normal older adults and those at risk for Alzheimer's disease. Neuropsychologia. doi: S0028-3932(15)30011-7 [pii];10.1016/j.neuropsychologia.2015.04.034. Retrieved from PMID: 26002757.Google Scholar
Parra, M. A., Abrahams, S., Fabi, K., Logie, R., Luzzi, S. and Della Sala, S. (2009). Short-term memory binding deficits in Alzheimer's disease. Brain, 132, 10571057.Google Scholar
Parra, M. A., Abrahams, S., Logie, R. H. and Della Sala, S. (2010a). Visual short-term memory binding in Alzheimer's disease and depression. Journal of Neurology, 257, 11601169. doi: 10.1007/s00415-010-5484-9.Google Scholar
Parra, M. A., Abrahams, S., Logie, R. H., Méndez, L. G., Lopera, F. and Della Sala, S. (2010b). Visual short-term memory binding deficits in familial Alzheimer's disease. Brain, 133, 27022702.Google Scholar
Parra, M. A., Della Sala, S., Abrahams, S., Logie, R. H., Méndez, L. G. and Lopera, F. (2011). Specific deficit of colour–colour short-term memory binding in sporadic and familial Alzheimer's disease. Neuropsychologia, 49, 19431952.Google Scholar
Parra, M. A., Della Sala, S., Logie, R. and Morcom, A. M. (2014). Neural correlates of shape colour binding in visual working memory. Neuropsychologia, 52, 2736.Google Scholar
Parra, M. A., Fabi, K., Luzzi, S., Cubelli, R., Hernandez Valdez, M. and Della Sala, S. (2013). Relational and conjunctive binding functions dissociate in short-term memory. Neurocase, 21, 5666. doi: 10.1080/13554794.2013.860177.Google Scholar
Parra, M. A. et al. (2015). Memory binding and white matter integrity in familial Alzheimer's disease. Brain, 138, 13551369.Google Scholar
Peña-Casanova, J. et al. (2009). Spanish multicenter normative studies (NEURONORMA Project): norms for the Rey-Osterrieth complex figure (copy and memory), and free and cued selective reminding test. Archives of Clinical Neuropsychology, 24, 371393. doi: 10.1093/arclin/acp041.Google Scholar
Perlmutter, M. (1979). Age differences in adults' free recall, cued recall, and recognition. Journal of Gerontology, 34, 533539. doi: 10.1093/geronj/34.4.533.Google Scholar
Piekema, C., Rijpkema, M., Fernandez, G. and Kessels, R. P. (2010). Dissociating the neural correlates of intra-item and inter-item working-memory binding. PLoS ONE, 5, e10214. doi: 10.1371/journal.pone.0010214.Google Scholar
Psychology Software Tools, Inc. [E-Prime 2.0]. (2012). Retrieved from: http://www.pstnet.com.Google Scholar
Román, G. C. (2003). Vascular dementia: distinguishing characteristics, treatment, and prevention. Journal of the American Geriatrics Society, 51, S296S304. doi: 10.1046/j.1532-5415.5155.x.Google Scholar
Sarazin, M. et al. (2010). The amnestic syndrome of hippocampal type in Alzheimer's disease: an MRI study. Journal of Alzheimer's Disease, 22, 285294. doi: 10.3233/JAD-2010-091150.Google Scholar
Slick, D. J. (2006). Psychometrics in neuropsychological assessment. In Strauss, E., Sherman, E. M. S. and Spreen, O. (eds.), A Compendium of Neuropsychological Tests: Administration, Norms, and Commentary (3rd ed., pp. 343). Oxford: Oxford University Press.Google Scholar
Sliwinski, M., Buschke, H., Stewart, W. F., Masur, D. and Lipton, R. B. (1997). The effect of dementia risk factors on comparative and diagnostic selective reminding norms. Journal of the International Neuropsychological Society, 3, 317326.Google Scholar
Sperling, R. A. et al. (2011). Toward defining the preclinical stages of Alzheimer's disease: recommendations from the national institute on Aging-Alzheimer's association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's and Dementia: The Journal of the Alzheimer's Association, 7, 280292.Google Scholar
Sperling, R. A., Karlawish, J. and Johnson, K. A. (2013). Preclinical Alzheimer disease-the challenges ahead. Nature Reviews Neurology, 9, 5458. doi: 10.1038/nrneurol.2012.241.Google Scholar
Staresina, B. P. and Davachi, L. (2010). Object unitization and associative memory formation are supported by distinct brain regions. The Journal of Neuroscience, 30, 98909897.Google Scholar
Tounsi, H. et al. (1999). Sensitivity to semantic cuing: an index of episodic memory dysfunction in early Alzheimer disease. Alzheimer Disease & Associated Disorders, 13, 3846.Google Scholar
Traykov, L. et al. (2005). Patterns of memory impairment and perseverative behavior discriminate early Alzheimer's disease from subcortical vascular dementia. Journal of the Neurological Sciences, 229, 7579. doi: 10.1016/j.jns.2004.11.006.Google Scholar
Tulving, E. and Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80, 352373. doi: 10.1037/H0020071.Google Scholar
Tyler, L. K. et al. (2013). Objects and categories: feature statistics and object processing in the ventral stream. Journal of Cognitive Neuroscience, 25, 17231735.Google Scholar
van Geldorp, B., Heringa, S. M., van den Berg, E., Olde Rikkert, M. G., Biessels, G. J. and Kessels, R. P. (2015). Working memory binding and episodic memory formation in aging, mild cognitive impairment, and Alzheimer's dementia. Journal of Clinical and Experimental Neuropsychology, 37, 538548.CrossRefGoogle ScholarPubMed
Wakefield, S. J., McGeown, W. J., Shanks, M. F. and Venneri, A. (2014). Differentiating normal from pathological brain ageing using standard neuropsychological tests. Current Alzheimer Research, 11, 765772.Google Scholar
Watson, H. C. and Lee, A. C. (2013). The perirhinal cortex and recognition memory interference. The Journal of Neuroscience, 33, 41924200.Google Scholar
Wheeler, M. E. and Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131, 4864.Google Scholar
Winograd, E., Smith, A. D. and Simon, E. W. (1982). Aging and the picture superiority effect in recall. Journal of Gerontology, 37, 7075.Google Scholar
Yonelinas, A. P., Widaman, K., Mungas, D., Reed, B., Weiner, M. W. and Chui, H. C. (2007). Memory in the aging brain: doubly dissociating the contribution of the hippocampus and entorhinal cortex. Hippocampus, 17, 11341140.Google Scholar
Zimmerman, M. E. et al. (2008). Hippocampal neurochemistry, neuromorphometry, and verbal memory in nondemented older adults. Neurology, 70, 15941600. doi: 10.1212/01.wnl.0000306314.77311.be.Google Scholar