Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-26T05:03:37.722Z Has data issue: false hasContentIssue false

The whitefly, Bemisia tabaci (Gennadius) as a vector of African cassava mosaic virus at the Kenya coast and ways in which the yield losses in cassava, Manihot esculenta Crantz caused by the virus can be reduced

Published online by Cambridge University Press:  19 September 2011

I. A. D. Robertson
Affiliation:
Commonwealth Institute of Biological Control, Kenya Station, P.O. Box 30148, Nairobi, Kenya
Get access

Abstract

A major cause of yield loss in cassava, Manihot esculenta Crantz in tropical Africa is African cassava mosaic virus, transmitted by the whitefly, Bemisia tabaci (Gennadius). Investigations into the epidemiology of the disease and the ecology of the insect vector at the Kenya coast demonstrated that the serious loss of yield caused by the virus could be greatly reduced if simple changes in husbandry practices were adopted. The regular rogueing of infected plants greatly reduced the incidence of African cassava mosaic virus.

Résumé

Les pertes de rendement de la production du manioc, Manihot esculenta Crantz en Afrique tropicale sont dues au African cassava mosaic virus (CMV), transmit par la mouche Bemisia tabaci (Gennadius). Au Kenya, sur la côte, des études épidemiologiques de la maladie et de l'écologie de l'insecte vecteur ont montré qu'il était possible de réduire les pertes graves causées par le virus en modifiant légèrement les pratiques agricoles. L'élimination régulière des plantes infectées diminuera fortement l'effet du CMV.

Type
Symposium IX: Biological and Cultural Techniques in Tropical Crop Pest and Vector Management
Copyright
Copyright © ICIPE 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bock, K. R. (1984) Crop Virology Research Project Final Report. Overseas Development Administration, London.Google Scholar
Bock, K. R., Guthrie, E. J. and Meredith, G. (1978) Distribution, host range, properties and purification of cassava latent virus, a geminivirus. Ann. Appl. Biol. 90, 361367.Google Scholar
Bock, K. R., Guthrie, E. J. and Figueiredo, G. (1981) A strain of cassava latent virus occurring in coastal districts of Kenya. Ann. Appl. Biol. 99, 151159.CrossRefGoogle Scholar
Bock, K. R. and Woods, R. D. (1983) The etiology of African Cassava Mosaic disease. Plant Disease, 67.Google Scholar
Chant, S. R. (1958) Studies on the transmission of cassava mosaic virus by Bemisia spp. (Aleyrodidae). Ann. Appl. Biol. 46, 210215.CrossRefGoogle Scholar
Jennings, D. L. (1957) Further studies in breeding cassava for virus resistance. E. Afr. Agric. J. 22, 213219.Google Scholar
Robertson, I. A. D. (1983) Crop Virology Research Project Annual Report. Overseas Development Administration, London.Google Scholar
Robertson, I. A. D. (1985) Crop Virology Research Project Final Report. Overseas Development Administration, London.Google Scholar
Seif, A. A. (1981) Transmission of cassava mosaic virus by Bemisia tabaci. Plant Disease 65, 606607.CrossRefGoogle Scholar
Seif, A. A. (1982) Effect of cassava mosaic virus on yield of cassava. Plant Disease 66, 661662.CrossRefGoogle Scholar
Storey, H. H. (1937) Virus diseases of East African Plants VI. A progress report on studies on the diseases of cassava. E. Afr. Agric. J. 2, 34.Google Scholar
Storey, H. H. and Nichols, R. F. W. (1938) Studies on the mosaic disease of cassava. Ann. Appl. Biol. 25, 790806.CrossRefGoogle Scholar