Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T00:39:09.707Z Has data issue: false hasContentIssue false

Survival and development of fruit borer, Heliothis armigera (Hübner), (Lepidoptera: Noctuidae) on Lycopersicon spp.

Published online by Cambridge University Press:  19 September 2011

R. K. Kashyap
Affiliation:
Department of Entomology, Haryana Agricultural University, Hisar, (India)
M. K. Banerjee
Affiliation:
Department of Vegetable Crops, Haryana Agricultural University, Hisar – 125 004, India
Kalloo
Affiliation:
Department of Vegetable Crops, Haryana Agricultural University, Hisar – 125 004, India
A. N. Verma
Affiliation:
Department of Entomology, Haryana Agricultural University, Hisar, (India)
Get access

Abstract

Nineteen accessions from seven Lycopersicon species were bioassayed for their resistance to Heliothis armigera (Hübner) (Lepidoptera: Noctuidae) in laboratory tests at 29 ± 1°C and 65 ± 2% r.h. Data on larval developmental duration (days), survival (%) and pupal weights (mg) revealed that maximum resistance to H. armigera occurred in accessions of L. hirsutum f. glabratum and L. hirsutum. When the larvae were fed on the foliage of PI 134417 and PI 126449 accessions (L. hirsutum f. glabratum), the developmental time was longer, and survival rate and pupal weights were lower than when the larvae were fed on cultivars of L. esculentum. Rearing of H. armigera larvae through third instar is sufficient to evaluate the resistance of wild tomato foliage since most of the larval mortality occurs prior to this stage. Accessions of L. peruvianum, L. chilense, L. cheesmanii and L. pimpinellifolium proved less resistant than L. hirsutum f. glabratum and L. hirsutum but significantly more resistant than L. esculentum. Thus, among the various Lycopersicon spp. bioassayed, accessions of L. hirsutum f. glabratum seem to have most potential for breeding H. armigera resistant cultivars.

Résumé

Dix-neuf spécimen issus de sept variétés de Lycopersicon ont fait l'objet d'une étude biologique en rapport avec leur résistance à l'Heliothis armigera (Hübner) (Lépidoptéres: Noctuidae) au cours d'une série de tests de laboratoire à 29 ± 1°C, 65 ± 2%.

Les données sur la durée (en jours) de l'évolution des larves, le pourcentage de survivance ainsi que le poids (en mg) des chrisalides — tout cela a révélé que le niveau de résistance le plus élevé vis-à-vis de l'H. armigera se trouve chez les spécimens du L. hirsutum f. glabratum et du L. hirsutum.

Lorsque les larves étaient nourries au feuillage des spécimen Pl 134417 et Pl 126449 (L. hirsutum f. glabratum), le cycle du développement devenait plus long, tandis que les taux de survivance ainsi que le poids des chrisalides devenaient plus bas que si les larves étaient nourries sur des variétés du L. esculentum.

Il suffisait d'observer les larves de l'H. armigera durant leur 3e étape de développement pour déterminer la résistance des feuilles de la tomate sauvage car la majeure partie de la mortalité des larves se produit avant cet âge.

Le spécimen du L. peruvianum, du L. chilense, du L. cheesmanii et du L. pimpinellifolium, se sont montrés moins résistants que le L. hirsutum f. glabratum et le L. hirsutum, mais quand même ils étaient de loin plus résistants que le L. esculentum.

Ainsi donc, parmi les différentes variétés du Lycopersicon ayant fait l'objet de l'étude biologique, les spécimens du L. hirsutum f. glabratum semblent avoir le plus de résistance contre la capacité de reproduction de l'H. armigera.

Type
Research Articles
Copyright
Copyright © ICIPE 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Burton, R. L. (1970) A low cost artificial diet for the corn earworm. J. econ. Entomol. 63, 19691970.CrossRefGoogle Scholar
Dimock, M. B. and Kennedy, G. G. (1983) The role of glandular trichomes in the resistance of Lycopersicon hirsutum f. glabratum to Heliothis zea. Entomol. Exp. Appl. 33, 263268.CrossRefGoogle Scholar
Duffey, S. S. and Isman, M. B. (1981) Inhibition of insect larval growth by phenolics in glandular trichomes of tomato leaves. Experientia 37, 574576.CrossRefGoogle Scholar
Farrar, R. R. Jr and Kennedy, G. G. (1987a) 2-Undecanone, a constituent of the glandular trichomes of Lycopersicon hirsutum f. glabratum: Effects on Heliothis zea and Manduca sexta growth and survival. Entomol. Exp. Appl. 43, 1723.Google Scholar
Farrar, R. R. Jr and Kennedy, G. G. (1987b) Growth, food consumption and mortality of Heliothis zea larvae on the foliage of wild tomato, Lycopersicon hirsutum f. glabratum and the cultivated tomato, L. esculentum. Entomol. Exp. Appl. 44, 213219.CrossRefGoogle Scholar
Farrar, R. R. Jr and Kennedy, G. G. (1988) 2-Undecanone, a pupal mortality factor in Heliothis zea: sensitive larval stage an in planta activity in Lycopersicon hirsutum f. glabratum. Entomol. Exp. Appl. 47, 205210.CrossRefGoogle Scholar
Fery, R. L. (1974) Resistance of tomato cultivars to fruitworm (Heliothis zea). Hort. Sci. 9, 469470.Google Scholar
Fery, R. L. and Cuthbert, R. L. Jr (1975) Antibiosis in Lycopersicon to the tomato fruitworm (Heliothis zea). J. Am. Soc. Sci. 100, 276278.Google Scholar
Kashyap, R. K. (1983) Studies on resistance behaviour of tomato genotypes against fruit borer, Heliothis armigera (Hübner). Ph.D. Dissertation, Haryana Agricultural University, Hisar (India), pp. 83.Google Scholar
Kashyap, R. K. and Batra, B. R. (1987) Influence of some crop management practices on the incidence of Heliothis armigera (Hübner) and yield of tomato (Lycopersicon esculentum Mill.) in India. Trop. Pest Manage. 33, 166169.CrossRefGoogle Scholar
Kashyap, R. K., Bhutani, R. D. and Kalloo, (1982) Relative susceptibility and variability studies against fruit borer in tomato. Punjab Hort. J. 22, 190193.Google Scholar
Kashyap, R. K. and Verma, A. N. (1987a) Factors imparting resistance to fruit damage by Heliothis armigera (Hèbner) in some tomato phenotypes. Insect Sci. Applic. 8, 111114.Google Scholar
Kashyap, R. K. and Verma, A. N. (1987b) Development and survival of fruit borer, Heliothis armigera (Hübner), on resistant and susceptible tomato genotypes. Z. Pflanz. Pflanz. 94, 1421.Google Scholar
Kennedy, G. G. and Dimock, M. B. (1983) 2-Tridecanone: A natural toxicant in a wild tomato responsible for insect resistance. In IUPAC Pesticide Chemistry, Human Welfare and the Environment (Edited by Miyamoto, J.), pp. 123128. Pergamon Press, New York.Google Scholar
William, W. G., Kennedy, G. G., Yamamoto, R. T., Thacker, J. D. and Bordner, J. (1980) 2-Tridecanone: A naturally occurring insecticide from the wild tomato Lycopersicon hirsutum f. glabratum. Science 207, 888889.CrossRefGoogle Scholar