Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T17:55:59.196Z Has data issue: false hasContentIssue false

Suitability of the flour moth Ephestia kuehniella (Lepidoptera: Pyralidae) for three predatory phytoseiid mites (Acari: Phytoseiidae) in Egypt

Published online by Cambridge University Press:  01 June 2007

Faten M. Momen*
Affiliation:
Pests and Plant Protection Department, National Research Centre, Tahrir Street, Dokki, Cairo, Egypt
Ahmed Y. El-Laithy
Affiliation:
Pests and Plant Protection Department, National Research Centre, Tahrir Street, Dokki, Cairo, Egypt
*
Get access

Abstract

The biology of Neoseiulus barkeri (Hughes), Typhlodromus balanites El-Badry and Amblyseius zaheri Yousef & El-Borolossy was studied using Ephestia kuehniella Zeller eggs as food source. For N. barkeri, the development was faster and reproduction was higher than for A. zaheri. Survival of immatures of T. balanites was low on eggs of E. kuehniella and all failed to develop to adulthood. A total of 50.4 and 41.0 eggs per female were obtained when N. barkeri and A. zaheri were fed on moth eggs, respectively. A diet of E. kuehniella eggs provided the highest female longevity and mean total fecundity, which resulted in the highest net reproductive rate (Ro = 32.88), intrinsic rate of natural increase (rm = 0.139) and finite rate of increase (λ = 1.149) for N. barkeri. The mean generation time ranged between 24.65 and 25.03 days for A. zaheri and N. barkeri, respectively. The sex ratio of the progeny was strongly female biased (female/total = 0.69 and 0.58) when eggs of E. kuehniella were provided for N. barkeri and A. zaheri.

Type
Research Paper
Copyright
Copyright © ICIPE 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abou-El ella, G. M. (1998) Studies on certain aspects of some predacious phytoseiid mites. PhD thesis, Faculty of Agriculture, Cairo University..Google Scholar
Abou-El ella, G. M. (2003) Suitability of the Thrips tabaci as prey for three predacious mites of the family Phytoseiidae. Journal of Agricultural Science, Mansoura University, 28, 69336939.Google Scholar
Abou-Setta, M. M., Sorrell, R. W. and Childers, C. C. (1986) Life-48: A BASIC computer programme to calculate life table parameters for an insect or mite species. Florida Entomologist 69, 690697.CrossRefGoogle Scholar
Andow, D. A. (1990) Characterization of predation on egg masses of Ostrinia nubilalis (Lepidoptera: Pyralidae). Annals of the Entomological Society of America 83, 482486.CrossRefGoogle Scholar
Andrewartha, H. G. and Birch, L. C. (1954) The Distribution and Abundance of Animals. The University of Chicago Press, Chicago.Google Scholar
Birch, L. C. (1948) The intrinsic rate of natural increase of an insect population. Journal of Animal Ecology 17, 1526.CrossRefGoogle Scholar
Blommers, L. (1976) Capacities for increase and predation in Amblyseius bibens (Acarina: Phytoseiidae). Zeitschrift für Angewandte Entomologie-Journal of Applied Entomology 381, 224225.Google Scholar
Bonde, J. (1989) Biological studies including population growth parameters of the predatory mite Amblyseius barkeri (Acarina: Phytoseiidae) at 25 °C in the laboratory. Entomophaga 34, 275287.CrossRefGoogle Scholar
Chant, D. A. (1959) Phytoseiid mites (Acarina: Phytoseiidae) Part 1. Bionomics of seven species in Southeastern England. Part 11. a. Taxonomic review of the family Phytoseiidae, with description of 38 new species. Canadian Entomologist 91, 166.Google Scholar
El-Arnaouty, S. A., Abdel khalek, S., Hassan, H., Shahata, M., Gamea, M. and Mahmoud, N. (1999) Mass rearing of aphidophagous predators Chrysoperla carnea spp. (Neuroptera: Chrysopidae) and Harmonia axyridis Pallas (Coleoptera: Coccinellidae) on eggs of Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae), p. 235. In Proceedings of the First Regional Symposium for Applied Biological Control in Mediterranean Countries, Cairo, Egypt, 25–29 October (Edited by M. Canerd and V. Beyssat-arnaouty). Imprimere Sacco, Toulouse, France.Google Scholar
El-Badry, E. A. (1968) Biological studies on Amblyseius aleyrodis a predator of the cotton whitefly. Entomophaga 13, 323329.CrossRefGoogle Scholar
El-Bagoury, M. E. and Momen, F. M. (1989) Typhlodromus balanites (Acarina: Phytoseiidae) as a predator of the gall mite Eriophyes dioscoridis (Acarina: Eriophyidae). Annals of Agricultural Science Moshtoher 27, 25132520.Google Scholar
El-Laithy, A. Y. and El-Sawi, S. A. (1998) Biology and life table parameters of the predatory mite Neoseiulus californicus fed on different diet. Journal of Plant Diseases and Protection 105, 532–537.Google Scholar
El-Sawi, S. A. and Momen, F. M. (2005) Biology of some phytoseiid predators (Acari: Phytoseiidae) on eggs of Phthorimaea operculella and Spodoptera littoralis (Lepidoptera: Gelechiidae and Noctuidae). Acarologia 46, 23–30.Google Scholar
Hansen, L. S. (1988) Control of Thrips tabaci (Thysanoptera: Thripidae) on glasshouse cucumber using large introduction of predatory mites Amblyseius barkeri (Acarina: Phytoseiidae). Entomophaga 33, 3342.CrossRefGoogle Scholar
Howe, R. W. (1953) The rapid determination of the intrinsic rate of increase of an insect population. Annals of Applied Biology 40, 134151.CrossRefGoogle Scholar
Hughes, A. M. (1976) The mites of stored food and houses, Technical Bulletin of the Ministry of Agriculture, Fisheries and Food, No. 9, 400 pp. London.Google Scholar
Kamburov, S. S. (1971) Feeding, development and reproduction of Amblyseius largoensis on various food substances. Journal of Economic Entomology 64, 643648.CrossRefGoogle Scholar
McMurtry, J. A., Huffaker, C. B. and van de Vrie, M. (1970) Ecology of tetranychid mites and their natural enemies: A review. 1. Tetranychid enemies: Their biological characters and the impact of spray practices. Hilgardia 40, 331–390.CrossRefGoogle Scholar
Momen, F. M. (1993) Effect of single and multiple copulation on fecundity, and sex ratio of the predacious mite, Amblyseius barkeri (Acari: Phytoseiidae). Journal of Pest Science 66, 148–150.Google Scholar
Momen, F. M. (1995) Feeding development and reproduction of Amblyseius barkeri (Acarina; Phytoseiidae) on various kinds of food substances. Acarologia 36, 101–105.Google Scholar
Momen, F. M. (1999) Feeding behaviour of some phytoseiid predators on two spotted spider mite eggs (Acari: Phytoseiidae: Tetranychidae). Phytophaga 9, 85–92.Google Scholar
Momen, F. M. (2001) Effects of diet on the biology and life tables of the predacious mite Agistemus exsertus (Acari: Stigmaeidae). Acta Phytopathologica et Entomologica Hungarica 36, 173178.CrossRefGoogle Scholar
Momen, F. M. (2004) Suitability of the pollen grain, Ricinus communis and Helianthus annuus as food for six species of phytoseiid mites (Acari: Phytoseiidae). Acta Phytopathologica et Entomologica Hungarica 39, 415422.CrossRefGoogle Scholar
Momen, F. M. and El-Borolossy, M. (1999) Suitability of the citrus brown mite, Eutetranychus orientalis as prey for nine species of phytoseiid mites (Acari: Tetranychidae: Phytoseiidae). Acarologia 40, 19–23.Google Scholar
Morrison, R. K., House, V. S. and Ridgway, R. L. (1975) An improved rearing unit for larvae of a common green lacewing. Journal of Economic Entomology 68, 821823.CrossRefGoogle Scholar
Muma, M. H. (1967) Biological studies on Macroseius biscutatus. Florida Entomologist 50, 245255.CrossRefGoogle Scholar
Muma, M. H. (1971) Food habits of Phytoseiidae (Acarina: Mesostigmata) including common species on Florida citrus. Florida Entomologist 54, 21–34.CrossRefGoogle Scholar
Nielsen, P. S. (2001) Developmental time of Blattisocius tarsalis (Acari: Ascidae) at different temperatures. Experimental and Applied Acarology 25, 605608.CrossRefGoogle ScholarPubMed
Ragusa, S. and Swirski, E. (1977) Feeding habits, post embryonic and adult survival, mating, virility and fecundity of the predacious mite Amblyseius swirskii (Acarina: Phytoseiidae) on some coccids and mealy bugs. Entomophaga 22, 383388.CrossRefGoogle Scholar
Ragusa, S. and Tsolakis, H. (1994) Influence of different kinds of food substances on the postembryonic development and oviposition rate of Amblyseius andersoni (Chant) (Parasitiformes, Phytoseiidae), pp. 411–419. In Proceedings of the 2nd Symposium of EURAAC, Krynia, Poland 1992 (Edited by Krapczynska, D., Boczek, G. and Tomczyk, A.). Thedapar, Warsaw, Poland.Google Scholar
Romeih, A. H., El Saidy, E. M. A. and El Arnaouty, S. A. (2004) Suitability of Ephestia kuehniella and Corycera cephalonica eggs as alternative preys for rearing predatory mites. Egyptian Journal of Biological Control 14, 101–105.Google Scholar
Saber, S. A. and Momen, F. M. (2000) Effects of mating factors on reproduction and sex ratio in the predacious mites, Amblyseius zaheri (Acari: Phytoseiidae). Journal of Pest Science 73, 113115.CrossRefGoogle Scholar
Sanchez, J. A. S., Mcgregor, R. R. and Gillespie, D. R. (2001) Sampling plan for Dicyphus hesperus (Heteroptera: Miridae) on greenhouse tomatoes. Environmental Entomology 31, 331338.CrossRefGoogle Scholar
Swirski, E. and Dorzia, N. (1968) Studies on the feeding, development and oviposition of the predacious mite Amblyseius limonicus Garman and McGregor (Acarina: Phytoseiidae) on various kinds of food substances. Israel Journal of Agricultural Research 18, 71–75.Google Scholar
Swirski, E. and Dorzia, N. (1969) Laboratory studies on the feeding, development and fecundity of the predacious mite Typhlodromus occidentalis Nesbitt (Acari: Phytoseiidae) on various kinds of food substances. Journal of Agricultural Research 19, 143–145.Google Scholar
Swirski, E., Amitai, S. and Dorzia, N. (1967a) Laboratory studies on the feeding, development and reproduction of the predacious mite Amblyseius rubini Swirski & Amitai and Amblyseius swirski Athias Henriot (Acarina: Phytoseiidae) on various kinds of food substances. Israel Journal of Agricultural Research 17, 101119.Google Scholar
Swirski, E., Amitai, S. and Dorzia, N. (1967b) Laboratory studies on the feeding, development and oviposition of the predacious mite Typhlodromus athiasae P. & S. (Acarina: Phytoseiidae) on various kinds of food substances. Israel Journal of Agricultural Research 17, 213218.Google Scholar
Swirski, E., Amitai, S. and Dorzia, N. (1970) Laboratory studies on the feeding habits, post embryonic survival and oviposition of the predacious mites Amblyseius chilenensis Dosse and Amblyseius hibisci Chant (Acari: Phytoseiidae) on various kinds of food substances. Entomophaga 15, 93106.CrossRefGoogle Scholar
Tanigoshi, L. K. (1982) Advances in knowledge of the biology of the Phytoseiidae, pp. 1–22. In Recent Advances in Knowledge of the Biology of the Phytoseiidae (Edited by Hoy, M. A.). Division of Agricultural Sciences, University of California, Publication 3284.Google Scholar
Teich, Y. (1966) Mites of the family Phytoseiidae as predators of the tobacco white fly, Bemisia tabaci Gennadius. Israel Journal of Agricultural Research 16, 141142.Google Scholar
van Rijn, P. C. J. and van Houten, Y. M. (1991) Life history of Amblyseius cucumeris and Amblyseius barkeri (Acarina: Phytoseiidae) on a diet of pollen, pp. 647654. In Modern Acarology (Edited by Dusbabek, F. and Bukva, V.). Vol. 2. Academia, Prague. The Hague, SPB Academic Publ.Google Scholar
Voegelé, J. J., Daumel, P. H., Brun, P. and Onillon, J. (1974) Action due traitement au froid aux ultraviolets de l'ceuf d' Ephestia kuehniella (Pyralidae), sur le touh de multiplication de Trichograma evanescens et T. brasiliensis (Hymenoptera: Trichogrammatidae). Entomophaga 19, 341348.CrossRefGoogle Scholar