Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T07:10:48.415Z Has data issue: false hasContentIssue false

Speciation via sexual selection versus adaptive evolution in Hawaiian Drosophila

Published online by Cambridge University Press:  19 September 2011

Kenneth Y. Kaneshiro
Affiliation:
Hawaiian Evolutionary Biology Program, University of Hawaii 3050 Maile Way, Honolulu, Hawaii 96822
Get access

Abstract

With perhaps a thousand species present in the endemic fauna, the Hawaiian Drosophilidae represents one of the most striking examples of explosive adaptive radiation known in the animal kingdom. However, there is mounting evidence that it is shifts within the sexual environment that are more important in the speciation process. Classical concepts of sexual selection theory are reviewed and some new ideas regarding the role of sexual selection in the origin of secondary sexual characters are presented. It is suggested that there is a range of mating types in both sexes and that differential selection between the two sexes, i.e. selection for males with superior mating ability and for less discriminant females, results in the maintenance of an optimum behavioural phenotype in the population. It is further suggested that the dynamics of the sexual selection process and the effects of pleiotropy play a significant role in levels of genetic variability in a single interbreeding population.

Résumé

Avec environ mille espèces présentes parmi la faune indigène, les Drosophiles Hawaïennes constituent l'un des exemples les plus frappants de radiation adaptive explosive connus dans tout le royaume animal. Cependant, il y a de plus en plus d'évidences que des changements sur le plan de l'environnement sexuel sont d'une plus grande importance dans le processus de spéciation. Dans la présente étude les concepts classiques de la sélection sexuelle sont ré-examinés et des idées neuves sur le rôle de la sélection sexuelle dans la génération de traits sexuels secondaires sont présentées. On suggère qu'il y a une gamme de types reproducteurs des deux sexes et que la selection différentielle entre les deux sexes—c'est à dire sélection qui favorise les males à puissance supérieure et les femelles les moins discriminantes—garantit le maintien d'un phénotype comportemental optimal dans la population. De plus, il est suggéré ici que la dynamique du processus de sélection sexuelle et les effets de la pléiotropie jouent un rôle important dans la détermination du niveau de variabilité génétique dans une population où les drosophiles reproductrices s'entrecroisent.

Type
Symposium II: Biotypes, Polymorphism and Co-evolution in Tropical Insects
Copyright
Copyright © ICIPE 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andersson, M. (1982) Female choice selects for extreme tail length in a widowbird. Nature 299, 818820.CrossRefGoogle Scholar
Bateman, A. J. (1948) Intra-sexual selection In Drosophila. Heredity 2, 349368.CrossRefGoogle ScholarPubMed
Bateson, P. (1983) Mate Choice. Cambridge University Press. London.Google Scholar
Blum, M. S. and Blum, N. A. (1979) Sexual Selection and Reproductive Competition. Academic Press, New York.Google Scholar
Burley, N. (1986) Sexual selection for aesthetic traits in species with biparental care. Am. Nat. 127, 415445.CrossRefGoogle Scholar
Campbell, B. (1972) Sexual Selection and the Descent of Man 1871–1971. Aldine Publishing Co., Chicago.Google Scholar
Carson, H. L. (1971) The ecology of Drosophila breeding sites. Univ. Hawaii, Harold L. Lyon Arboretum Lecture No. 2, 127.Google Scholar
Carson, H. L. (1978) Speciation and sexual selection in Hawaiian Drosophila. In: Ecological Genetics: The Interface. (Edited by Brussard, P. F.), pp. 93107. Springer-Verlag, New York.CrossRefGoogle Scholar
Carson, H. L. (1985) Genetic variation in a courtship-related male character In Drosophila silvestris from a single Hawaiian locality. Evolution 39, 678686.Google Scholar
Carson, H. L. (1987) The role of sexual behavior in maximizing Darwinian fitness. Behav. Genet, in press.CrossRefGoogle Scholar
Carson, H. L. and Bryant, P. J. (1979) Genetic variation in Hawaiian Drosophila VI. Change in a secondary sexual character as evidence of incipient speciation In Drosophila. Proc. Nat. Acad. Sci. USA 76, 19291932.Google Scholar
Carson, H. L. and Kaneshiro, K. Y. (1976) Drosophila of Hawaii: systematics and ecological genetics. A. Rev. Ecol. Syst. 7, 311346.CrossRefGoogle Scholar
Carson, H. L. and Lande, R. (1984) Inheritance of a secondary sexual character In Drosophila silvestris. Proc. Natl. Acad. Sci. USA 81, 69046907.Google Scholar
Carson, H. L. and Teramoto, L. T. (1984) Artificial selection for a secondary sexual character in males of Drosophila silvestris from Hawaii. Proc. Natl. Acad. Sci. USA 81, 39153917.Google Scholar
Carson, H. L., Hardy, D. E., Spieth, H. T. and Stone, W. S. (1970) The evolutionary biology of Hawaiian Drosophilidae. In: Essays in Evolution and Genetics in Honor of Theodosius Dobzhansky. (Edited by Hecht, K. and Steere, W. C.), pp. 437543. Appleton-Century-Crofts, New York.CrossRefGoogle Scholar
Caspari, E. (1952) Pleiotropic gene action. Evolution 6, 118.CrossRefGoogle Scholar
Darwin, C. (1871) The Descent of Man and Selection in Relation to Sex. Modern Library. New York.Google Scholar
Fisher, R. A. (1930) The Genetical Theory of Natural Selection. Claredon Press, Oxford.CrossRefGoogle Scholar
Hardy, D. E. (1971) Evolution of the Hawaiian Drosophilidae (Insecta: Diptera). Symposium of Indian Ocean and Adjacent Seas. Marine Biol. Assoc. India Cochin, India 228, 147148.Google Scholar
Hardy, D. E. (1974) Evolution in the Hawaiian Drosophilidae: Introduction and background information. In Genetic Mechanisms of Speciation in Insects. (Edited by White, M. J. D.), pp. 7180. Australia and New Zealand Book Co., Sydney.Google Scholar
Hardy, D. E. and Kaneshiro, K. Y. (1981) The Drosophilidae of Pacific Oceania. In The Genetics and Biology of Drosophila. (Edited by Ashburner, M., Carson, H. L. and Thompson, J. N. Jr), pp. 309342. Academic Press, New York.Google Scholar
Huxley, J. (1938) Darwin's theory of sexual selection and the data subsumed by it in light of recent research. Am. Nat. 72, 416433.CrossRefGoogle Scholar
Kaneshiro, K. Y. (1976) Ethological isolation and phylogeny in the planitibia subgroup of Hawaiian Drosophila. Evolution 30, 740745.CrossRefGoogle ScholarPubMed
Kaneshiro, K. Y. (1980) Sexual behavior and phylogeny of Hawaiian Drosophila. Abstracts, Second Int. Congr. Syst. Evol. Biol. p. 114. Univ. British Columbia, Vancouver B. C.Google Scholar
Kaneshiro, K. Y. (1983) Sexual selection and direction of evolution in the biosystematics of Hawaiian Drosophilidae. A. Rev. Ent. 28, 161178.CrossRefGoogle Scholar
Kaneshiro, K. Y. (1987a) The dynamics of sexual selection and founder effects in species formation. In: Genetics, Speciation and the Founder Principle, (Edited by Giddings, L. V., Kaneshiro, K. Y. and Anderson, W. W.), Oxford University Press, in press.Google Scholar
Kaneshiro, K. Y. (1987b) The dynamics of sexual selection and its pleiotropic effects. Behav. Genetics, in press.CrossRefGoogle Scholar
Kaneshiro, K. Y. and Giddings, L. V. (1987) The significance of asymmetrical sexual isolation. In Evolutionary Biology. (Edited by Hecht, M., Wallace, B. and Prance, G.), Vol. 21 (in press).Google Scholar
Kaneshiro, K. Y. and Kurihara, J. S. (1981) Sequential differentiation of sexual isolation in populations of Drosophila silvestris. Pac. Sci. 35, 177183.Google Scholar
Kirkpatrick, M. (1982) Sexual selection and the evolution of female choice. Evolution 36, 112.CrossRefGoogle ScholarPubMed
Lande, R. (1980) The genetic covariance between characters maintained by pleiotropic mutations. Genetics 94, 203215.CrossRefGoogle ScholarPubMed
Lande, R. (1981) Models of speciation by sexual selection on polygenic traits. Proc. Nat. Acad. Sci. 78, 37213725.CrossRefGoogle ScholarPubMed
Lande, R. (1982) Rapid origin of sexual isolation and character divergence in a line. Evolution 36, 213223.CrossRefGoogle Scholar
McPhail, J. D. (1969) Predation and the evolution of a stickleback (Gasterosteus). J. Fish. Res. Board Canada 26, 31833208.CrossRefGoogle Scholar
O'Donald, P. (1977) Theoretical aspects of sexual selection. Theor. Popul. Biol. 12, 298334.CrossRefGoogle ScholarPubMed
O'Donald, P. (1980) Genetic Models of Sexual Selection. Cambridge University Press, Cambridge.Google Scholar
Rose, M. R. (1982) Antagonistic pleiotropy, dominance and genetic variation. Heredity 48, 6378.CrossRefGoogle Scholar
Semler, D. E. (1971) Some aspects of adaptation in a polymorphism for breeding colours in the threespine stickleback (Gasterosteus aculeatus). J. Zool., London 165, 291302.CrossRefGoogle Scholar
Thornhill, R. and Alcock, R. (1983) The Evolution of Insect Mating Systems. Harvard University Press, Cambridge.CrossRefGoogle Scholar
Wallace, A. R. (1889) Darwinism, 3rd Edition. 1923. MacMillan and Co., Ltd. London.Google Scholar
West-Eberhard, M. J. (1983) Sexual selection, social competition, and speciation. Q. Rev. Biol. 58, 155183.CrossRefGoogle Scholar
Williamson, M. (1981) Island Populations. Oxford Univ. Press, London.Google Scholar
Wirth, W. W. (1952) Two new spider egg predators from the Hawaiian Islands (Diptera: Drosophilidae). Proc. Haw. Ent. Soc. 14, 415417.Google Scholar
Wright, S. (1968) Evolution and the Genetics of Populations, Vol. 1. Genetic and Biometric Foundations. Univ. of Chicago Press, Chicago.Google Scholar
Zimmerman, E. C. (1958) Three hundred species of Drosophila in Hawaii? A challenge to geneticists and evolutionists. Evolution 12, 557558.CrossRefGoogle Scholar
Zimmerman, E. C. (1970) Adaptive radiation in Hawaii with special references to insects. Biotropica 2, 3238.CrossRefGoogle Scholar