Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T20:00:30.736Z Has data issue: false hasContentIssue false

Screening termite species for laccase: Role of symbiotic fungi

Published online by Cambridge University Press:  19 September 2011

P. Mora*
Affiliation:
Laboratoire d'Ecophysiologie des Invertébrés, Université Paris XII Val de Marne Avenue du Général de Gaulle, 94010 Créteil Cedex, France
C. Lattaud
Affiliation:
ORSTOM Ile de France–Laboratoire d'Ecologie des Sols Tropicaux 32, Avenue Varagnat 93000 Bondy Cedex 09
*
Corresponding author: PM. E-mail: [email protected]
Get access

Abstract

A survey for laccase, an enzyme involved in phenol oxidation, was carried out in 23 termite species from three different feeding guilds. In soil-feeding (6 species) and wood-feeding (7 species) termites, laccase activity was not detected. In contrast, all the fungus-growing termites (10 species) tested showed laccase activity. The symbiotic fungi (conidia) and fungus combs showed higher activity than the termites themselves in 6 species: Macrotermes bellicosiis, M. miilleri, Odontotermes sp., O. sp. aff. interveniens, Pseudacanthotermes spiniger and P. militaris. Fungus combs always had the highest laccase activity. The absence of laccase activity in soil-feeding and wood-feeding termites is discussed. The presence of laccase activity in both termites and Termitomyces constitutes novel information relevant to the degradation of phenols.

Résumé

La présence d'une activité laccase a été recherchée chez 23 espèces de termites appartenant à différents régimes alimentaires: humivores, xylophages et champignonnistes. Chez les 6 espèces humivores et les 7 espèces xylophages, l'activité laccase n'a jamais été observée contrairement à ce qui a été obtenu chez les termites champignonnistes. Dans la meule et les champignons symbiotiques des espèces Macrotermes bellicosus, M. miilleri, Odontotermes sp., O. sp. aff. interveniens, Pseudacanthotermes spiniger et P. militaris l'activité est toujours plus importante que celle du termite. L'absence d'activité laccase chez les espèces humivores et xylophages est discutée. Pour la première fois, l'oxydation de phénols par voie enzymatique a été démontrée chez les termites champignonnistes et leur champignon symbiotique indiquant ainsi l'existence d'un métabolisme oxydatif des phénols chez ce groupe de termites.

Type
Research Articles
Copyright
Copyright © ICIPE 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bigneil, D. E. and Eggleton, P. (1995) On the elevated intestinal pH of higher termites (Isoptera: Termitidae). Insectes Soc. 42, 5769.CrossRefGoogle Scholar
Bourbonnais, R. and Paice, M. G. (1990) Oxidation of non phenolic substrates. An expanded role for lacease in lignin biodegradation. FEBS lett. 267, 99102.CrossRefGoogle ScholarPubMed
Brauman, A. and Garcia, J. L. (1991) Isolation of a new 3-hydroxybenzoate fermenting bacterium from the hindguts of a soil feeding termite: Cubitermes speciosus. Abstracts of the 91st General Meeting of the American Society of Microbiology, p. 192.Google Scholar
Brune, A. and Kühl, M. (1996) pH profiles of the extremely alkaline hindguts of soil feeding termites (Isoptera; Termitidae) determined with microelectrodes. J. Insect Physiol. 42, 11211127.CrossRefGoogle Scholar
Brune, A., Miambi, E. and Breznak, J. A. (1995) Roles of oxygen and the intestinal microflora in the metabolism of lignin-derived phenylpropanoids and other monoaromatic compounds by termites. Appl. Environ. Microbiol. 61, 26882695.CrossRefGoogle Scholar
Butler, J. H. and Buckerfield, J. C. (1979) Digestion of lignin by termites. Soil Biol. Biochem. 11, 507513.CrossRefGoogle Scholar
Cookson, L. J. (1987) 14C-lignin degradation by three Australian termites species. Wood Sci. Technol. 21, 1125.CrossRefGoogle Scholar
Cookson, L. J. (1988) The site of mechanism of 14C-lignin degradation by Nasutitermes exitiosus. J. Insect Physiol. 34, 409414.CrossRefGoogle Scholar
French, J. R. J. and Bland, D. E. (1975) Lignin degradation in the termites Coptotermes lacteus and Nasutitermes exitiosus. Mater. Org. 10, 281288.Google Scholar
Grasse, P. P. (1982) Termitologia Anatomie-Physiologie-Biologie-Systématiqiie des Termites. Masson Eds, Paris, New York, Barcelona, Milan, Mexico, Rio de Janeiro. 676 pp.Google Scholar
Grech-Mora, I., Fardeau, M. L., Patel, B. K. C., Ollivier, B., Rimbault, A., Prensier, G., Garcia, J. L. and Garnier-Sillam, E. (1996) Isolation and characterization of Sporobactcr termitidis gen. nov., sp. nov., from the digestive tract of the wood-feeding termite Nasutitermitinae lujae. Int. J. System. Bact. 46, 512518.CrossRefGoogle Scholar
Higuchi, T. (1989) Mechanisms of lignin degradation by lignin peroxidase and lacease of white rot fungi, pp. 482502. In Biogenesis and Biodegradation of Plant Cell Polymers (Edited by Lewis, N. G. and Paice, M. G.). ACS Symposium Series 399.CrossRefGoogle Scholar
Jeffries, T. W. (1990) Biodegradation of lignin-carbohydrate complexes. Biodegradation 1, 163176.CrossRefGoogle Scholar
Kovoor, J. (1970) Présence d'enzymes cellulolytique dans l'intestin d'un termite supérieur Microcerotermes edentatus (Was). Ann. Soc. Nat. 12, 6571.Google Scholar
Matoub, M. and Rouland, C. (1995) Purification and properties of the xylanases from the termite Macrotermes bellicosus and its symbiotic fungus Termitomyces sp. Comp. Biochem. Physiol. 112, 629635.CrossRefGoogle ScholarPubMed
Mayer, A. M. (1987) Polyphenol oxidases in plants— Recent progress. Phytochemistry 26, 1120.CrossRefGoogle Scholar
Pelaez, F., Martinez, M. J. and Martinez, A. T. (1995) Screening of 68 species of basidiomycetes for enzymes involved in lignin degradation. Mycol. Res. 99, 3742.CrossRefGoogle Scholar
Rouland, C., Charraras, C. and Renoux, J. (1986) Etude comparée des osidases de trois espèces de termites africains à régime alimentaire différent. C. R. Acad. Sci. Paris Serie III, 9, 341345.Google Scholar
Rouland, C., Lenoir, F. and Lepage, M. (1991) The role of the symbiotic fungus in the digestive metabolism of several species of fungus-growing termites. Comp. Biochem. Physiol. 99, 657663.CrossRefGoogle Scholar
Sedmark, J. J. and Crossberg, G. (1977) A rapid, sensitive and versatile assay for protein using Coomassie brilliant blue G 250. Analyt. Biochem. 79, 544552.CrossRefGoogle Scholar
Thurston, C. F. (1994) The structure and function of fungal lacease. Microbiology 140, 1926.CrossRefGoogle Scholar
Tuor, U., Winterhalter, K. and Fiechter, A. (1995) Enzymes of white-rot fungi involved in lignin degradation and ecological determinants for wood decay, J. Biotechnol. 41, 117.CrossRefGoogle Scholar
Yaver, D. S., Xu, F., Golightly, E. J., Brown, K. M., Brown, S. H., Rey, M. W., Schneider, P., Halkier, K., Mondorf, K. and Dalboge, H. (1996) Purification characterization, molecular cloning and expression of two lacease genes from the white rot basidiomycete Trametes villosa. Appl. Environ. Microbiol. 62, 834841.CrossRefGoogle ScholarPubMed