Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T08:00:15.141Z Has data issue: false hasContentIssue false

The Role of Olfaction in Host-Seeking of Mosquitoes: A Review

Published online by Cambridge University Press:  19 September 2011

Willem Takken
Affiliation:
Department of Entomology, Wageningen Agricultural University, P. O. Box 8031, 6700 EH Wageningen, The Netherlands
Get access

Abstract

This review concentrates on air-borne chemical cues that blood-seeking mosquitoes use to locate a host. A distinction is made between short- and long-range attraction. Carbon dioxide is involved in both processes. It activates and attracts mosquitoes. The latter function is only observed in combination with an odorous organo-chemical. Other olfactory cues are primarily involved in long-range attraction. Bodily emanations from the host that contain olfactory cues can be divided into three groups: Skin emanations, exhaled air and urine. Each of these is attractive to mosquitoes, but there is little knowledge about the chemical compounds that cause the attraction. Lactic acid in the presence of CO2 is attractive, and lactic acid-sensitive neurosensilla are present on the antennae. Other host-produced chemicals are also attractive, but chemical identification and subsequent confirmation of attractiveness for mosquitoes has not been reported. Host preference in mosquitoes is species-specific and varies from highly specific to opportunistic. Attraction is likely to be caused by a mixture of several compounds. Synergism may be an important way of increasing the effect of separate chemical cues.

Résumé

Ce rapport se concentre sur les facteurs chimiques volatils utilisés par les moustiques pour localiser un hôte nourricier. Une distinction est faite entre une attraction à courte et à longue distance. Le dioxyde de carbone est impliqué dans les deux cas, étant un activant et un attractif. Cette dernière fonction n'est impliquée qu'en combinaison avec un produit chimique olfactif. Les émanations corporelles d'un hôte nourricier contenant des facteurs volatils sont divisés en trois groupes:émanations de la peau, air expiré, et urine. Chaqu'un est attractif pour les moustiques, mais les produits chimiques responsables pour cette attraction sont peu connus. L'acid lactique en présence du dioxyde de carbon est attractif, et des neurosensilles sensibles à l'acid lactique se trouvent sur les antennes. D'autres produits chimiques venant d'hôtes nourriciers sont attractifs, mais leur identification et confirmation comme attractifs olfactifs n'a pas été rapportée. Chez les moustiques, la préférence alimentaire varie entre les espéces, de trés spécifique à opportunistique. L'attraction est vraisemblablement due à un composé de produits chimiques. Une synergie pourrait augmenter l'effet de ces facteurs.

Type
Articles
Copyright
Copyright © ICIPE 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acree, F. Jr, Turner, R. B., Gouck, H. K., Beroza, M. and Smith, N. (1968) L-Lactic acid: A mosquito attractant isolated from humans. Science 161, 13461347.CrossRefGoogle ScholarPubMed
Allan, S. A., Day, J. F. and Edman, J. D. (1987) Visual ecology of biting flies. A. Rev. Entomol. 32, 297316.CrossRefGoogle ScholarPubMed
Bar-Zeev, M., Maibach, H. I. and Khan, A. A. (1977) Studies on the attraction of Aedes aegypti (Diptera: Culicidae) to man. J. Med. Entomol. 14, 113120.CrossRefGoogle ScholarPubMed
Bos, H. J. and Laarman, J. J. (1975) Guinea pig, lysine cadaverine and estradiol as attractants for the malaria mosquito Anopheles stephensi. Entomologia Exp. Appl. 18, 161172.CrossRefGoogle Scholar
Brouwer, R. (1960) Variations in human body odour as a cause of individual differences of attraction for malaria mosquitoes. Trop. Geogr. Med. 12, 186192.Google Scholar
Brown, A. W. A. and Carmichael, A. G. (1961) Lysine as a mosquito attractant. Nature, London 189, 508509.CrossRefGoogle Scholar
Brown, A. W. A., Sarkaria, D. S. and Thompson, R. P. (1951) Studies on the responses of the female Aedes mosquito. Part I — The search for attractant vapours. Bull. entomol. Res. 42, 105114.CrossRefGoogle Scholar
Bursell, E., Gough, A. J. E., Beevor, P. S., Cork, A., Hall, D. R. and Vale, G. A. (1988) Identification of components of cattle urine attractive to tsetse flies, Glossina spp. (Diptera: Glossinidae). Bull. Entomol. Res. 78, 281291.CrossRefGoogle Scholar
Carlson, D. A., Smith, N., Gouck, H. K. and Godwin, D. R. (1973) Yellow fever mosquitoes: Compounds related to lactic acid that attract females. J. econ. Entomol. 66, 329331.CrossRefGoogle Scholar
Clements, A. N. (1963) The Physiology of Mosquitoes. Pergamon Press, London.Google Scholar
Davis, E. E. (1984) Development of lactic acid-receptor sensitivity and host-seeking behaviour in newly emerged female Aedes aegypti mosquitoes. J. Insect Physiol. 30, 211215.CrossRefGoogle Scholar
Davis, E. E., Haggart, D. A. and Bowen, M. F. (1987) Receptors mediating host-seeking behaviour in mosquitoes and their regulation by endogenous hormones. Insect Sci. Applic. 8, 637641.Google Scholar
Davis, E. E. and Sokolove, P. G. (1976) Lactic acid-sensitive receptors on the antennae of the mosquito, Aedes aegypti. J. Comp. Physiol. 96, 223236.CrossRefGoogle Scholar
Daykin, P. N., Kellogg, F. E. and Wright, R. H. (1965) Host-finding and repulsion of Aedes aegypti. Can. Entomol. 97, 239263.CrossRefGoogle Scholar
Downe, A. E. R. (1960) Blood-meal sources and notes on host preferences of some Aedes mosquitoes (Diptera: Culicidae). Can. J. Zool. 38, 689699.CrossRefGoogle Scholar
Edman, J. D. (1979) Orientation of some Florida mosquitoes (Diptera: Culicidae) toward small vertebrates and carbon dioxide in the field. J. Med. Entomol. 15, 292296.CrossRefGoogle Scholar
Gibson, G. and Brady, J. (1988) Flight behaviour of tsetse flies in host odour plumes: the initial response to leaving or entering odour. Physiol. Entomol. 13, 2942.CrossRefGoogle Scholar
Gillett, J. D. (1979) Out for blood: flight orientation up-wind in the absence of visual cues. Mosquito News 39, 221229.Google Scholar
Gillies, M. T. (1974) Methods for assessing the density and survival of blood-sucking diptera. A. Rev. Entomol. 19, 345362.CrossRefGoogle ScholarPubMed
Gillies, M. T. (1980) The role of carbon dioxide in host-finding by mosquitoes (Diptera: Culicidae): a review. Bull. entomol. Res. 70, 525532.CrossRefGoogle Scholar
Gillies, M. T. and Coetzee, M. (1987) A Supplement to the Anopheline of Africa South of the Sahara (Afrotropical region). The South African Institute for Medical Research, Johannesburg.Google Scholar
Gillies, M. T. and Wilke, T. J. (1972) The range of attraction of animal baits and carbon dioxide for mosquitoes. Studies of a freshwater area of West Africa. Bull. entomol. Res. 61, 389404.CrossRefGoogle Scholar
Hall, D. R., Beevor, P. S., Cork, A., Nesbitt, B. F., and Vale, G. A. (1984) l-Octen-3-ol, a potent olfactory stimulant and attractant for tsetse isolated from cattle odours. Insect Sci. Applic. 5, 335339.Google Scholar
Kellogg, F. E. (1970) Water vapour and carbon dioxide receptors in Aedes aegypti. J. Insect Physiol. 16, 99108.CrossRefGoogle ScholarPubMed
Kennedy, J. S. (1939) The visual responses of flying mosquitoes. Proc. zool. Soc. London, Ser. A., 221242.Google Scholar
Khan, A. A., Maibach, H. I., Strauss, W. G. and Fenley, W. R. (1966) Quantitation of effect of several stimuli on the approach of Aedes aegypti. J. econ. Entomol. 59, 690694.CrossRefGoogle ScholarPubMed
Krotoszynski, B., Gabriel, G., and O'Neill, H. (1977) Characterization of human expired air: a promising investigative and diagnostic technique. J. Chromatograph. Sci. 15, 239244.CrossRefGoogle Scholar
Laarman, J. J. (1955) The host-seeking behaviour of the malaria mosquito. Ph.D. Thesis, Leiden.Google Scholar
Laarman, J. J. (1958) The host-seeking behaviour of Anopheline mosquitoes. Trop. Geogr. Med. 10, 293305.Google ScholarPubMed
Maibach, H. I., Skinner, W. A., Strauss, W. G. and Khan, A. A. (1966) Factors that attract and repel mosquitoes in human skin. J. Am. Med. Assoc. 196, 173176.CrossRefGoogle ScholarPubMed
Mayer, M. S. and James, J. D. (1969) Attraction of Aedes aegypti (L): responses to human arms, carbon dioxide, and air currents in a new type of olfactometer. Bull. entomol. Res. 58, 629642.CrossRefGoogle Scholar
Mclver, S. B. (1968) Host preferences and discrimination by the mosquitoes Aedes aegypti and Culex tarsalis (Diptera: Culicidae). J. Med. Entomol. 5, 422428.CrossRefGoogle Scholar
Mclver, S. B. (1982) Sensilla of mosquitoes (Diptera: Culicidae). J. Med. Entomol. 19, 489535.CrossRefGoogle Scholar
Mclver, S. B. (1987) Sensilla of haematophagous insects sensitive to vertebrate host-associated stimuli. Insect Sci. Applic. 8, 627635.Google Scholar
Mer, G., Birnbaum, D. and Aioub, A. (1947) The attraction of mosquitoes by human beings. Parasitology 38, 19.CrossRefGoogle ScholarPubMed
Müller, W. (1968) Die Distanz- und Kontakt-Orientierung der Stechmücken (Aedes aegypti) (Wirtzfindung, Stechverhalten und Blutmahlzeit). Z. vergl. Physiol. 58, 241303.CrossRefGoogle Scholar
Nicolas, G. and Sillans, D. (1989) Immediate and latent effects of carbon dioxide on insects. A. Rev. Entomol. 34, 97116.CrossRefGoogle Scholar
Omer, S. M. (1979) Responses of females of Anopheles arabiensis and Culex pipiens fatigans to air currents, carbon dioxide and human hands in a flight-tunnel. Entomologia exp. Appl. 26, 142151.CrossRefGoogle Scholar
Omer, S. M. and Gillies, M.T. (1971) Loss of response to carbon dioxide in palpectomized female mosquitoes. Entomologia exp. appl. 14, 251252.Google Scholar
Parker, A. H. (1948) Stimuli involved in the attraction of Aedes aegypti L., to man. Bull. entomol. Res. 39, 387397.CrossRefGoogle ScholarPubMed
Parker, A. H. (1952) The effect of a difference in temperature and humidity on certain reactions of female Aedes aegypti (L.). Bull. entomol. Res. 43, 221229.CrossRefGoogle Scholar
Price, G. D., Smith, N. and Carlson, D. A. (1979) The attraction of female mosquitoes (Anopheles quadrimaculatus Say) to stored human emanations in conjunction with adjusted levels of relative humidity, temperature, and carbon dioxide. J. Chem. Ecol. 5, 383395.CrossRefGoogle Scholar
Reeves, W. C. (1951) Field studies on carbon dioxide as a possible host stimulant to mosquitoes. Proc. Soc. exp. Biol. Med. 77, 6466.CrossRefGoogle Scholar
Roessler, H. P. (1961) Versuche Zur geruchlichen Anlockung weiblicher Stechmucken (Aedes aegypti L., Culicidae). Z. Vergl. Physiol. 44, 184231.CrossRefGoogle Scholar
Roessler, H. P. and Brown, A. W. A. (1964) Studies on the responses of the Aedes mosquito; cross comparison of oestrogen and amino acids as attractants. Bull. entomol. Res. 55, 395403.CrossRefGoogle Scholar
Rudolfs, W. (1922) Chemotropism of mosquitoes Bull. New Jers. agr. Exp. Stn. 367, 423.Google Scholar
Schaerffenberg, B. and Kupka, E. (1951) Untersuchungen über die geruchliche Orientierung blutsaugenden insekten. I. Uber die Wirkung eines Blutduftstoffes auf Stomoxys und Culex. Osterreich Zool. Zeitsch. 111, 410424.Google Scholar
Schreck, C. E., Smith, N., Carlson, D. A., Price, G. D., Haile, D. and Godwin, D. R. (1981) A material isolated from human hands that attracts female mosquitoes. J. Chem. Ecol. 8, 429438.CrossRefGoogle Scholar
Skinner, W. A., Tong, H., Pearson, T., Strauss, W. and Maibach, H. (1965) Human sweat components attractive to mosquitoes. Nature 207, 679680.CrossRefGoogle ScholarPubMed
Smith, C.N., Smith, N., Gouck, H. K., Weidhaas, D. E., Gilbert, I. H., Mayer, M. S., Smittle, B. J. and Hofbauer, A. (1970) L-Lactic acid as a factor in the attraction of Aedes aegypti (Diptera: Culicidae) to human hosts. Ann. entomol. Soc. Am. 63, 760770.CrossRefGoogle ScholarPubMed
Snow, W. F. (1970) The effect of a reduction in expired carbon dioxide on the attractiveness of human subjects to mosquitoes. Bull. entomol. Res. 69, 4348.CrossRefGoogle Scholar
Snow, W. F. (1983) The attractiveness of some birds and mammals for mosquitoes in the Gambia, West Africa. Ann. trop. Med. Parasitol. 77, 641651.CrossRefGoogle ScholarPubMed
Sokolov, V. E. (1982) The structure of different parts of mammalian skin. In Mammal Skin, pp. 342, University of California Press, Berkeley.CrossRefGoogle Scholar
Stryker, R. G. and Young, W. W. (1970) Effectiveness of carbon dioxide and L(+) Lactic acid in mosquito light traps with and without light. Mosquito News 30, 388393.Google Scholar
Sutcliffe, J. F. (1987) Distance orientation of biting flies to their hosts. Insect Sci. Applic. 8, 611616.Google Scholar
Takken, W. and Kline, D. L. (1989) Carbon dioxide and 1-octen-3-ol as mosquito attractant. J. Am. Mosq. Cont. Assoc. 5, 311316.Google Scholar
Thompson, R. P. and Brown, A. W. A. (1955) The attractiveness of human sweat to mosquitoes and the role of carbon dioxide. Mosquito News 15, 8084.Google Scholar
Vale, G. A. (1974) The responses of tsetse flies (Diptera: Glossinidae) to mobile and stationary hosts. Bull. entomol. Res. 64, 545588.CrossRefGoogle Scholar
Vale, G. A. and Hall, D. R. (1985) The use of 1-octen-3-ol, acetone and carbon dioxide to improve baits for tsetse flies, Glossina spp. (Diptera: Glossinidae). Bull. entomol. Res. 75, 219231.CrossRefGoogle Scholar
Van Thiel, P. H. (1939) On zoophilism and anthropophilism of Anopheles biotypes and species. Riv. Malar. 18, 95124.Google Scholar
Vickery, C. A. Jr, Meadows, K. E. and Baughman, I. E. (1966) Synergism of carbon dioxide and chick as bait for Culex nigripalpus. Mosquitoes News 26, 507508.Google Scholar
Willis, E. R. (1948) The olfactory responses of female mosquitoes. J. econ. Entomol. 40, 769778.CrossRefGoogle Scholar