Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T13:35:08.077Z Has data issue: false hasContentIssue false

Resistance of Sesbania accessions to Mesoplatys ochroptera Stål (Coleoptera: Chrysomelidae)

Published online by Cambridge University Press:  19 September 2011

G. Sileshi
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30722, Nairobi, Kenya
C. K. P. O. Ogol
Affiliation:
Department of Zoology, Kenyatta University, P.O. Box 43844, Nairobi, Kenya
S. Sithanantham*
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30722, Nairobi, Kenya
M. R. Rao
Affiliation:
International Centre for Research in Agroforestry (ICRAF), P.O. Box 30677, Nairobi, Kenya
J. Baumgärtner
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30722, Nairobi, Kenya
J. A. Maghembe
Affiliation:
Zambia/ICRAF Agroforestry Project, P.O. Box 510046, Chipata, Zambia
P. L. Mafongoya
Affiliation:
Zambia/ICRAF Agroforestry Project, P.O. Box 510046, Chipata, Zambia
*
Corresponding author: SS E-mail: [email protected]
Get access

Abstract

The defoliating beetle Mesoplatys ochroptera Stål (Coleoptera: Chrysomelidae) has become a serious pest of the tropical legume Sesbania sesban (L.) Merrill in agroforestry systems in eastern and southern African countries. In this study, 32 accessions of Sesbania spp. collected from eastern and southern Africa were screened for resistance to M. ochroptera at Msekera, Zambia. Two mechanisms of resistance—antixenosis and antibiosis—were indicated in the different accessions. Accessions of Sesbania bispinosa, S. leptocarpa and S. macrantha were found to be more preferred by the insect compared to S. sesban and S. rostrata accessions. Preference of accessions was negatively correlated with leaf-hair density and positively correlated with the number of leaves per seedling and plant height. Under the conditions of eastern Zambia, some accessions of S. sesban from Kenya, Malawi and Ethiopia were found to be comparable to the Zambian accessions in survival, growth and biomass production. Four accessions of S. sesban—Kakamega (ex Kibwezi) and Kisii 2 from Kenya, Zwai 090 from Ethiopia and Rumphi from Malawi—appeared to compensate well for M. ochroptera damage.

Résumé

Le scarabée défoliateur Mesoplatys ochroptera Stal (Coleoptera; Chrysomelidae) est devenu un sérieux ravageur de la légumineuse tropicale Sesbania sesban (L.) Merill dans les systèmes agroforestiers des pays d'Afrique de l'Est et du Sud-est. Dans cette étude 31 lots de Sesbania spp. récoltés en Afrique de l'Est et du Sud-est ont été criblés pour leur résistance à M. ochroptera à Msekera, en Zambie. Deux mécanismes de résistance, l'antixénose et l'antibiose, ont été évalués dans les différents lots. Les lots de Sesbania bispinosa, S. leptocarpa et S. macrantha sont plus appréciés par les insectes que les lots de S. sesban et S. rostran. La préférence des lots est corrélée négativement avec la densité de pcils des feuilles et positivement avec le nombre de feuilles par plantules et la hauteur de ces dernières. Dans les conditions de l'Est de la Zambie certains lots de S. sesban du Kenya, du Malawi et d'Ethiopie sont comparables aux lots de la Zambie pour la survie, la croissance et la production de biomasse. Quatre lots de S. sesban: Kakamega (ex Kibwezi) et Kisii 2 du Kenya, Zwai 090 d'Ethiopie et Rumphi du Malawi semblent bien compenser les dégâts de M. ochroptera.

Type
Research Articles
Copyright
Copyright © ICIPE 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[AOAC] Association of Analytical Chemists (1984) Official Methods of Analysis. 16th edn.Washington, D.C.524 pp.Google Scholar
Beach, R. M., Todd, J. W. and Baker, S. H. (1985) Antibiosis of four insect-resistant soybean genotypes to the soybean looper (Lepidoptera: Noctuidae). Environ. Eniomol. 14, 531534.CrossRefGoogle Scholar
Le Bourgeois, T. (1992) Destruction of the tropical weed, Sesbania pachy carpa (Fabaceae)by a natural defoliator, Mesoplatys cincta (Chrysomelidae) in North Cameroon. Entmuophaga 37, 609611.Google Scholar
Bowers, G. R., Kenty, M. M., Way, M. O., Funderburk, E. and Strayer, R. (1999) Comparison of three methods for estimating defoliation in soybean breeding programs. Agronomy Journal 91, 242247.CrossRefGoogle Scholar
Evans, D. O. and Rotar, P. P. (1987) Sesbania in Agriculture. Westview Press, Boulder, Colorado, 197 pp.Google Scholar
Gillett, J. B. (1963) Sesbania in Africa (excluding Madagascar) and southern Arabia. Kew Bull. 17, 19159.CrossRefGoogle Scholar
Janson, R. K. and Smilowitz, Z. (1985) Influence of nitrogen on population parameters of potato insects: abundance, development, and damage of the Colorado beetle, Lcptinotarsa deceiuilineata (Coleoptera: Chrysomelidae). Environ. Entotuol. 14, 500506.CrossRefGoogle Scholar
Karachi, M., Lema, N., Sabas, E., Shirima, D. and Maghembe, J. A. (1994) Growth, biomass production and plant mortality of seven Sesbania sesban var nubica and three Sesbania macrantha accessions at Tumbi, Tanzania. For. Ecol. Manage. 64, 153159.CrossRefGoogle Scholar
Karachi, M. and Matata, Z. (2000) Forage and seed yields, mortality and nutritive value of Sesbania sesban under unimodal rain fall in Tanzania, J. Trop. For. Sci. 12, 238246.Google Scholar
Kwesiga, F. and Beniest, J. (1998) Sesbania improved fallows for eastern Zambia: An extension guideline. International Centre for Research in Agroforestry, Nairobi, Kenya, 55 pp.Google Scholar
Kwesiga, F. and Coe, R. (1994) The effect of short rotation Sesbania sesban planted as fallows on maize. For. Ecol. Manage. 64, 199209.CrossRefGoogle Scholar
Kwesiga, F., Franzel, S., Place, F., Phiri, D. and Simwanza, C. P. (1999) Scsbania sesban improved fallows in eastern Zambia: their inception, development and farmer enthusiasm. Agrofor. Sys. 47, 4966.CrossRefGoogle Scholar
Logarzo, G. A. and Casalinuovo, M. A. (1997) Suitability of the North American weeds Sesbania exaltata and S. dniriiinondi (Leguminosae) as hosts for Neodiplograinrnns quadrivittatus and Trichapion Intivcntrc (Coleoptera: Curculionidae) in Argentina. Environ. Entomol. 26, 343348.CrossRefGoogle Scholar
Mafongoya, P. L., Nair, P. K. R. and Dzowela, B. H. (1998) Mineralization of nitrogen from decomposing leaves of multipurpose trees as affected by their chemical composition. Biol. Pert. Soils 27, 143148.CrossRefGoogle Scholar
Ohmart, C. P., Stewart, L. G. and Thomas, J. R. (1985) Effect of food quality, particularly nitrogen concentrations, of Eucalyptus blackeyi foliage on the growth of Paropsis atomaria larvae (Coleoptera: Chrysomelidae). Occobgia 65, 543549.Google ScholarPubMed
Otieno, K., Onim, J. F. M., Bryant, M. J. and Dzowela, B. H. (1991) The relationship between biomass yield and linear measures of growth in Sesbania sesban in Western Kenya. Agrofor. Sys. 13, 131141.CrossRefGoogle Scholar
Price, P. W. (1991) The plant vigour hypothesis and herbivore attack. Oikos 62, 244251.CrossRefGoogle Scholar
Rao, D. L. N. and Gill, H. S. (1993) Nitrogen fixation, biomass production and nutrient uptake by annual Sesbania species in an alkaline soil. Biol. Fert. Soils 15, 7378.CrossRefGoogle Scholar
Rao, M. R., Niang, A., Kwesiga, F., Duguma, B., Franzel, S., Jama, B. and Buresh, R. (1998) Soil fertility replenishment in sub-Saharan Africa: New techniques and the spread of their use on farms. Agrofor. Today 10, 38.Google Scholar
Rao, M. R., Singh, M. P. and Day, R. (2000) Insect pest problems in tropical agroforestry systems: contributory factors and strategies for management. Agrofor. Sys. 50, 243277.CrossRefGoogle Scholar
Roth, S., Knorr, C. and Lindroth, R. L. (1997) Dietary phenolics affect performance of the gyspy moth (Lepidoptera: Lymantriidae) and its parasitoid Cotesia melanoscela (Hymenoptera: Braconidae). Environ. Entomol. 26, 668671.CrossRefGoogle Scholar
SAS Institute (1996) SAS/STAT, Release 6.12. SAS Institute Inc., Cary, NC.Google Scholar
Sileshi, G., Maghembe, J. A., Rao, M. R., Ogol, C. K. P. O. and Sithanantham, S. (2000) Insects feeding on sesbania in natural stands and agroforestry in southern Malawi. Agrofor. Sys. 49, 4152.CrossRefGoogle Scholar
Sileshi, G. (2000) Studies on Insect Pests of Sesbania sesban with Special Emphasis on Mesoplatys ochroptera Stål (Chrysomelidae: Coleoptera) in Southern Africa. PhD Thesis, Kenyatta University. 237 pp.Google Scholar
Singh, A. K. and Sharma, D. N. (1981) Effect of growth stage on the extractability of leaf protein concentrates. Acta. Bot. Indica 9, 247251.Google Scholar
Soetens, P., Rowell-Rahier, M. and Pasteeis, J. M. (1991) Influence of phenolic glucosides and trichome density on the distribution of insect herbivores in willow. Entomol. Exp. Appl. 59, 175187.CrossRefGoogle Scholar
Steinmüller, N. (1995) Agronomy of the nitrogen fixing fodder tree Sesbania sesban (L.) Merril and Sesbania goetzii Harms in the Ethiopian highlands. Verlag Ulrich E. Grauer, Stuttgart, Germany, 230 pp.Google Scholar
Wade, M. E. (1994) The biology of the imported willow leaf beetle, Plagiodera versicolora (Laicharting) pp. 541547. In Novel Aspects of the Biology of Chrysomelidae (Edited by Jolivet, P.H., Cox, M.L., and Petitpierre, E.). Kluwer Academic Publishers, Amsterdam.CrossRefGoogle Scholar
Wale, M., Abate, T. and Tesfaye, A. (1996) Getting to know the enemy—Mesoplatys beetles and Sesbania. Agrofor. Today 8, 1718.Google Scholar