Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T14:24:48.309Z Has data issue: false hasContentIssue false

Purification and characterization of two thermostable cellulase-free xylanases from workers of the termite Macrotermes subhyalinus (Isoptera: Termitidae)

Published online by Cambridge University Press:  28 February 2007

Betty Meuwiah Faulet
Affiliation:
Laboratoire de Biochimie et Technologie des Aliments de l'Unité de Formation et de Recherche en Sciences et Technologie des Aliments de l'Université d'Abobo-Adjamé, 02 BP 801 Abidjan 02, Côte d'Ivoire
Sébastien Niamké*
Affiliation:
Laboratoire de Biotechnologies, Filière Biochimie-Microbiologie de l'Unité de Formation et de Recherche en Biosciences de l'Université de Cocody, 22 BP 582 Abidjan 22, Côte d'Ivoire
Jean Tia Gonnety
Affiliation:
Laboratoire de Biochimie et Technologie des Aliments de l'Unité de Formation et de Recherche en Sciences et Technologie des Aliments de l'Université d'Abobo-Adjamé, 02 BP 801 Abidjan 02, Côte d'Ivoire
Lucien Patrice Kouamé
Affiliation:
Laboratoire de Biochimie et Technologie des Aliments de l'Unité de Formation et de Recherche en Sciences et Technologie des Aliments de l'Université d'Abobo-Adjamé, 02 BP 801 Abidjan 02, Côte d'Ivoire
Get access

Abstract

Termite workers, Macrotermes subhyalinus (Rambur), produced two cellulase-free xylanases, namely Xyl A and Xyl B. DEAE-Sepharose CL-6B, Sephacryl S-200 HR, CM-Sepharose CL-6B and Phenyl-Sepharose CL-4B chromatographies purified these enzymes. They exhibited molecular masses of 63–66.1 (Xyl A) and 60.7–62.4 (Xyl B) kDa. Both enzymes appeared to be endo-xylanases, which produced oligomers of xylose from xylan and did not hydrolyse them to xylose. They had different optimum pH (pH 4.6–5.0 for Xyl A and pH 5.0 for Xyl B) and different optimum temperatures (60 °C for Xyl A and 55 °C for Xyl B). However, they had the same pH stability (4.0–5.6). Both enzymes were stable at 50 °C for more than 4 h. At a pH ranging from 4.6–5.0 and 60 °C, Xyl A and Xyl B possessed the half-life of 115 and 60 min, respectively. The xylanase activities were stimulated by Na+, Mn2+ and dithiol-reducing agents and were sensitive to Cu2+ and detergent agents. Their enzymatic activity was slightly reduced by the presence of urea at 1% (w/v) concentration. The two enzymes could be used in the presence of organic solvents such as acetone (up to 10% v/v) without loss of activity.

Type
Research Article
Copyright
Copyright © ICIPE 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alconada, T. M. and Martinez, M. J. (1994) Purification and characterization of an extracellular endo-1,4-(β-xylanase from Fusarium oxysporum f. sp. melonis FEMS Microbiology Letters 118 305310.Google Scholar
Baba, T., Scinke, R. and Nanmori, T. (1994) Identification and characterization of clustered genes for thermostable xylan-degrading enzymes, β-xylosidase and xylanase, of Bacillus stearothermophilus 21 Applied and Environmental Microbiology 151 22522258.CrossRefGoogle Scholar
Bataillon, M., Nunes Cardinali, A.-P., Castillon, N. and Duchiron, F. (2000) Purification and characterization of a moderately thermostable xylanase from Bacillus sp. strain SPS-O Enzyme and Microbial Technology 26 187192.CrossRefGoogle Scholar
Bedford, M. R. and Classen, H. L. (1992) The influence of dietary xylanase on intestinal viscosity and molecular weight distribution of cardohydrates in rye-fed broiler chicks, pp. 361370. In Xylans and Xylanases, (Edited by Visser, J., Beldman, G., van Someren, M. A. K., Voragen, A. G. J.) Elsevier, Amsterdam.Google Scholar
Beg, Q. R., Kapoor, M., Mahajan, L. and Hoondal, G. S. (2001) Microbial xylanases and their industrial applications: A review Applied Microbiology and Biotechnology 56 326338.CrossRefGoogle ScholarPubMed
Bennett, C. (1967) Denaturation of polypeptide substrates Methods in Enzymology 11 211213.Google Scholar
Bernfeld, P. (1955) Amylase α and β Mehods in Enzymology 1, (Edited by Colswick, S. P., Kaplan, N. O. pp. 149154Google Scholar
Biely, P. (1985) Microbial xylanolytic systems Trends in Biotechnology 3 286290.CrossRefGoogle Scholar
Blum, H., Beier, H. and Gross, B. (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels Electrophoresis 8 9399.CrossRefGoogle Scholar
Brennan, Y., Callen, W. N., Christoffersen, L., Dupree, P., Goubet, F., Healey, S., Hernandez, M., Keller, M. Li, K., Palackal N., Sittenfeld, A., Tamayo, G., Wells, S., Hazlewood, G. P., Mathur, E. J., Short, J. M., Robertson, D. E. and Steer, B. A. (2004) Unusual microbial xylanases from insect guts Applied Microbiology and Biotechnology 70 36093618.Google ScholarPubMed
Brückner, H. (1955) Estimation of monosaccharides by the orcinol-sulphuric acid reaction Biochemistry Journal 60 200205.CrossRefGoogle ScholarPubMed
Butler, J. H. A. and Buckerfield, J. C. (1973) Digestion of lignin by termites Soil Biology and Biochemistry 11 507513.CrossRefGoogle Scholar
Cannio, R. Di, Prizito, N, Rossi, M. and Morana, A. (2004) A xylan-degrading strain of Sulfolobus solfataricus: Isolation and characterization of the xylanase activity Extrem 1121 6771.Google Scholar
Cesar, T. Mrsa V. (1996) Purification and properties of the xylanase produced by Thermomyces lanuginosus Enzyme and Microbial Technology 19 289296.CrossRefGoogle Scholar
Chandra, K. R. and Chandra, T. S. (1996) Purification and characterization of xylanase from alkali-tolerant Aspergillus fischeri Fxn 1 FEMS Microbiology Letters 145 457461.Google Scholar
Cookson, L. J. (1992) Studies of lignin degradation in mound material of the termite Nasutitermes exitiosus Australian Journal of Soil Research 30 189193.Google Scholar
Dekker, R. F. H. (1983) Bioconversion of hemicelluloses: Aspects of hemicellulase production by Trichoderma resei Qm 9414 and enzymatic saccharification of hemicellulose Biotechnology and Bioengineering 25 11271146.CrossRefGoogle Scholar
Eriksson, K. E. and Wood, T. M. (1985) Biosynthesis and Biodegradation of Wood Components 469503. (Edited by Higuchi, T.) Florida Academic Press, Orlando.Google Scholar
Fialho, M. B. and Carmona, E. C. (2004) Purificaton and characterization of xylanases from Aspergillus giganteusa Folia Microbiologica 49 1318.CrossRefGoogle Scholar
Franco, P. F., Ferreira, H. M. and Filho, E. X. (2004) Production and characterization of hemicellulase activities from Trichoderma harzianum strain T4 Biotechnology and Applied Biochemistry 40 255259.Google Scholar
Gawande, P. V. and Kamat, M. Y. (1998) Preparation, characterization and application of Aspergillus sp. xylanase immobilized on Eudragit S-100 Journal of Biotechnology 66 165175.CrossRefGoogle ScholarPubMed
Grassé, P. P. (1982) Anatomie, Physiologie, Reproduction des Termites. Masson, Paris. 676.Google Scholar
Gupta, S., Bhushan, B. and Hoondal, G. S. (2000) Isolation, purification and characterization of xylanase from Staphylococcus sp. SG-13 and its application in biobleaching of Kraft pulp Journal of Applied Microbiology 88 325334.CrossRefGoogle ScholarPubMed
Higashi, M. and Abe, T. (1996) Global diversification of termites driven by the evolution of symbiosis and sociality, 83112. (Edited by Abe, T., Levin, S. A., Higashi, M.). Springer-Verlag, New York.Google Scholar
Jänis, J., Turunen, O., Leisola, M., Derrick, P. J., Rouvinen, J. and Vainiotalo, P. (2004) Characterization of mutant xylanases using fourier transform ion cyclotron resonance mass spectrometry: Stabilizing contributions of disulfide bridges and N-terminal extensions. Biochemistry 43 95569566.CrossRefGoogle ScholarPubMed
Khasin, A., Alchnati, I. and Shoam, Y. (1993) Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6 Applied and Environmental Microbiology 59 17251730.Google Scholar
König, H., Fröhlich, J., Bechtold, M. and Wenzel, M. (2002) Diversity and microhabitats of the hindgut flora of termites Recent Research Developments in Microbiology 146 125156.Google Scholar
Kouamé, L. P. (2006) Identification de protéases du termite Macrotermes subhyalinus (Rambur) et de son champignon symbiotique Termitomyces sp. Caractérisation des exo-glycosidases thermophiles ou possédant une bonne activité de transglycosylation 210 Abidjan, Côte d'Ivoire Thèse de Doctorat d'Etat, Université Abobo-AdjaméGoogle Scholar
Kouamé, L. P., Kouamé, A. F., Niamké, S. L., Faulet, M. B. Kamenan A. (2005) Biochemical and catalytic properties of two β-glycosidases purified from workers of the termite Macrotermes subhyalinus (Isoptera: Termitidae) International Journal of Tropical Insect Science 25 103113.Google Scholar
Kouamé, L. P., Niamké, S., Diopoh, J. Colas B. (2001) Transglycosylation reactions by exoglycosidases from the termite Macrotermes subhyalinus Biotechnology Letters 23 15751581.CrossRefGoogle Scholar
Kuhad, R. C.Singh, A. (1993) Lignocellulosic biotechnology: Current and future prospects Critical Reviews in Biotechnology 13 152172.CrossRefGoogle Scholar
Laemmli, U. K. (1970) Cleavage of structure proteins during the assembly of the head of bacteriophage T 4 Nature 227 680685.Google Scholar
Lama, L., Calandrelli, V., Gambacorta, A. and Nicolaus, B. (2004) Purification and characterization of thermostable xylanase and β-xylosidase by the thermophilic bacterium Bacillus thermantarcticus Research in Microbiology 155 283289.Google Scholar
Lee, S. F., Forsberg, C. W. and Gibbins, L. N. (1985) Xylanolytic activity of Clostridium acetobutylicum Applied and Environmental Microbiology 50 10681076.Google Scholar
Li, L., Fröhlich, J., Pfeiffer, P. König H. (2003) Termite gut symbiotic Archaezoa are becoming living metabolic fossils Eukaryotic Cell 2 10911098.CrossRefGoogle ScholarPubMed
Li, X-L., Zhang, Z.-Q., Dean, J. F. D., Eriksson, K.-E. L. and Ljungdahl, L. G. (1993) Purification and characterization of a new xylanase (APX-II) from the fungus Aureobasidium pullulans Y-2311-1 Applied and Environmental Microbiology 59 32123218.Google Scholar
Maat, J., Roza, M., Verbakel, J., Stam, H. da, Silra, M. J. S., Egmond, M. R., Hagemans, M. D. L., Van Garcom, R. F. M., Hessing, J. G. M., Van Derhondel, C. A. M., J., J., Van Roterdam, C. (1992) In Xylans and Xylanases, 349360. (Edited by Visser, J., Beldman, G., Van Someran, M. A. K., Voragen, A. G. J.) Elsevier, Amsterdam.Google Scholar
Marrone, L. A., McAllister, K. and Clarke, J. A. (2000) Characterization of the function and activity of domains A B and C of xylanase C from Fibrobacter succinogenes S85. Protein Engineering 13 593601.Google Scholar
Martin, M. M. (1991) The evolution of cellulose digestion in insects Philosophical Transactions of the Royal Society of London 333 281288.Google Scholar
Matoub, M. (1993) La symbiose termite champignon chez Macrotermes bellicosus (Termitidae, Macrotermitinae) 187 Université Paris XII Val de Marne Thèse de DoctoratGoogle Scholar
Matoub, M.Rouland, C. (1995) Purification and properties of the xylanases from the termite Macrotermes bellicosus and its symbiotic fungus Termitomyces sp Comparative Biochemistry and Physiology 112 629635.CrossRefGoogle ScholarPubMed
Nakashima, K., Watanabe, H., Saitoh, H., Tokuda, G., Azuma, J.-J. (2002) Dual cellulose-digesting system of the wood-feeding termite Coptotermes formosanus Insect Biochemistry and Molecular Biology 32 777784.Google Scholar
Niamké, S., Guionie, O., Guével-David, L., Moallic, C., Dabonne, S., Sine, J.-P. and Colas, B. (2003) Physico-chemical and immunological properties and partial amino acid sequencing of a new metalloprotease: Endoprotease Thr-N Biochimica et Biophysica Acta 1623 2128.Google Scholar
Niamké, S., Sine, J.-P., Guionie, O. and Colas, B. (1999) A novel endopeptidase with a strict specificity for threonine residues at the P1, position Biochemical and Biophysical Research Communications 256 307312.Google Scholar
Noirot, C. (1992) From wood to humus feeding: An important trend in termite evolution107119. In Biology and Evolution of Social Insects, (Edited by Billen, J.) Belgium Leuven University Press, Leuven.Google Scholar
Pountanen, K. and Puls, J. (1988) Characteristics of Trichoderma reesei β-xylosidase and its use in the hydrolysis of solubilized xylans Applied Microbiology and Biotechnology 28 425432.Google Scholar
Rogalski, J., Oleszek, M., Tokarzewska-Zadora, J. (2001) Purification and characterization of two endo-1,4-beta-xylanases and a 3-xylosidase from Phlebia radiata Acta Microbiologica Polonika 50 117128.Google Scholar
Rouland, C., Braumann, A., Keleke, S., Labat, M., Mora, P. and Renoux, J. (1990) Endosymbiosis and exosymbiosis in the fungus-growing termites, pp. 7882. In Microbiology of Poecilotherms (Edited by Lesel, R.) Elsevier Science Publishers, Amsterdam.Google Scholar
Rouland, C., Civas, A., Renoux, J. and Petek, F. (1988a) Purification and properties of cellulases from termite Macrotermes mulleri (Termitidae, Macrotermitinae) and its symbiotic fungus Termitomyces sp. Comparative Biochemistry and Physiology 91 449458.Google Scholar
Rouland, C., Renoux, J. and Petek, F. (1988b) Purification and properties of two xylanases from Macrotermes mulleri (Termitidae, Macrotermitinae) and its symbiotic fungus Termitomyces sp. Insect Biochemistry 18 709715.Google Scholar
Shao, W. and Wiegel, J. (1992) Purification and characterization of a thermostable β-xylosidase from Thermoanaerobacter ethanolicus Journal of Bacteriology 174 58485853.Google Scholar
Shareck, F. C. R., Yaguchi, M., Morosoli, R. and Kluepfel, D. (1991) Sequences of three genes specifying xylanases in Streptomyces lividans Gene 107 7582.Google Scholar
Smith, P. K., Krohm, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, M. N., Olson, B. J. and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid Analytical Biochemistry 150 7685.CrossRefGoogle ScholarPubMed
Subramaniyan, S. and Prema, P. (2000) Cellulase-free xylanases from Bacillus and other microorganisms FEMS Microbiology Letters 183 17.Google Scholar
Taneja, K., Gupta, S. and Kuhad, R. C. (2002) Properties and application of a partially purified alkaline xylanase from an alkalophilic fungus Aspergillus nidulans KK-99 Bioresource Technology 85 3942.Google Scholar
Viikari, L., Kantelineo, A., Bundquist, J. and Linko, M. (1994) Xylanase in bleaching: From an idea to the industry FEMS Microbiology Reviews 13 335350.Google Scholar
Wong, K. K. Y., Tan, L. U. L. and Saddler, J. N. (1988) Multiplicity of β-1,4-xylanase in microorganisms: Function and applications Microbiology Reviews 52 305317.CrossRefGoogle ScholarPubMed
Woodward, J. (1984) Xylanase functions, properties and applications Topics in Enzyme and Fermentation Biotechnology. 178 930.Google Scholar
Wong, K. K. Y. and Saddler, J. N. (1992) Trichoderma xylanases, their properties and purification Critical Reviews in Biotechnology 12 413435.Google Scholar