Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T21:52:34.339Z Has data issue: false hasContentIssue false

Post-Ingestive Effects of Excelsin on Growth and Development of Spilarctia obliqua Walker

Published online by Cambridge University Press:  19 September 2011

V. Prajapati
Affiliation:
Bioprospection Group, Genetic Resources and Biotechnology Division, Central Institute of Medicinal and Aromatic Plants P. O. CIMAP, Lucknow-226015, India
A. K. Tripathi*
Affiliation:
Bioprospection Group, Genetic Resources and Biotechnology Division, Central Institute of Medicinal and Aromatic Plants P. O. CIMAP, Lucknow-226015, India
D. C. Jain
Affiliation:
Phytochemical Technology Division, Central Institute of Medicinal and Aromatic Plants P. O. CIMAP, Lucknow-226015, India
Sudhanshu Saxena
Affiliation:
Phytochemical Technology Division, Central Institute of Medicinal and Aromatic Plants P. O. CIMAP, Lucknow-226015, India
S. P. S. Khanuja
Affiliation:
Bioprospection Group, Genetic Resources and Biotechnology Division, Central Institute of Medicinal and Aromatic Plants P. O. CIMAP, Lucknow-226015, India
Get access

Abstract

Exposure of fouth instars of Spilarctia obliqua Walker (Lepidoptera: Arctiidae) to excelsin over a 24 h period resulted in reduced feeding and growth rates. To distinguish between antifeedant and toxic effects, growth efficiency, calculated as the slope of the regression of the relative growth rate on relative consumption rate, was compared with results from antifeedant simulation and contact toxicity bioassays. From the results, it is concluded that excelsin exerts its toxic effects at the physiological level.

Résumé

Des chenilles du quatrième stade larvaire de Spilarctia obliqua Walker (Lepidoptera: Arctiidae), exposées à l'excelsine pendant 24 h, ont des taux d'alimentation et de croissance réduits Afin de distinguer les effets d'inappétence des effets toxiques, le rendement de la croissance, calculé comme la pente de régression du taux de croissance relative sur le taux de consommation, a été comparé avec celui obtenu lors de bioessais sur l'inappétence et sur la toxicité de contact. Les résultats obtenus permettent de conclure que l'excelsine a des effets toxiques sur la physiologie des chenilles.

Type
Research Articles
Copyright
Copyright © ICIPE 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anonymous (1985) The Wealth of India (Raw Materials). Vol. 1A (Revised). Publication and Information Directorate, CSIR, New Delhi. 116 pp.Google Scholar
Arnason, J.T., Philogene, B. J. R. and Morand, P. (1989) Insecticides of Plant Origin. American Chemical Society, Washington, DC. ACS Symposium Series. 387 pp.CrossRefGoogle Scholar
Atri, B. S. and Prasad, R. (1980) Neem oil extractives— An effective mosquito larvicide. Indian J. Entomol. 42, 371374.Google Scholar
Berenbaum, M. and Finney, P. (1981) Toxicity of angular furanocoumarins to swallowtail butterflies: Escalation in a coevolutionary arms race? Science, 212, 927929.CrossRefGoogle Scholar
Blau, P.A., Feeny, P., Contardo, L. and Robson, D.S. (1978) Allylglucosinolate and herbivorous caterpillars: A contrast in toxicity and tolerance. Science 200, 12961298.CrossRefGoogle ScholarPubMed
Crossby, D.G. (1971) Minor insecticides of plant origin pp. 177242. In Naturally Occurring Insecticides (Edited by Jacobson, M. and Crossby, D.G.). Marcel Dekker, New York.Google Scholar
Farrar, R.R., Barbour, J.J. and Kennedy, G. (1989) Quantifying food consumption and growth in insects. Ann. Entomol. Soc. Am. 82, 593598.CrossRefGoogle Scholar
Finney, P. (1976) Plant apparency and chemical defence. Recent Adv. Phytochem. 10, 1—40.Google Scholar
Jermy, T. (1990) Prospects of antifeedant approach to pest control. A critical Review, J. Chem. Ecol. 16, 31513160.CrossRefGoogle ScholarPubMed
Liu, Y.B., Randall, A.A. and Bentley, M.D. (1990) Effects of epilimonol and starvation on feeding and ovipositionby Leptinotarsa decemlineata. Entomol. Exp. Appl. 53, 3944.CrossRefGoogle Scholar
Saxena, R.C. (1987) Antifeedants in tropical pest management, insect Sci. Applic. 8, 731736.Google Scholar
Schmutterer, H. (1990) Properties and potential of natural pesticides from neem tree, Azadirachta indica. Annu. Rev. Entomol. 35, 271297.CrossRefGoogle ScholarPubMed
Tallarida, R.J. and Murray, R.B. (1981) Pharmacologic Calcidations with Computer Program. Springer-Verlag, Berlin, pp. 297304.Google Scholar
Tewari, S.N. and Bhattacharya, A.K. (1987) Artificial diet for Spilosoma obliqua. Mem. Entomol. Soc. India 12, IARI, New Delhi.Google Scholar
Tripathi, A.K. and Jain, D.C. (1993) Excelsin: An insect feeding-deterrent isolated from Ailanthus excelsa (Simarubaceae). Phytotherapy Research 7, 323325.CrossRefGoogle Scholar