Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T21:10:41.842Z Has data issue: false hasContentIssue false

A new 6a-hydroxypterocarpan with insect antifeedant and antifungal properties from the roots of Tephrosia hildebrandtii vatke

Published online by Cambridge University Press:  19 September 2011

W. Lwande
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
A. Hassanali
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
P. W. Njoroge
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
M. D. Bentley
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
F. Delle Monache
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
J. I. Jondiko
Affiliation:
The International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
Get access

Abstract

A new 6a-hydroxylated pterocarpan, named hildecarpin, has been isolated from the healthy roots of Tephrosia hildebrandtii. It has been assigned the structure (−)-3, 6a-dihydroxy-2-methoxy-8, 9-methylenedioxypterocarpan on the basis of its spectroscopie data, optical rotation and chemical transformations. Hildecarpin has exhibited insect antifeedant activity against the legume pod-borer Maruca testulalis, an important pest of the cowpea (Vigna unguiculata), and antifungal activity against Cladosporium cucumerinum. This finding suggests that the pterocarpan phytoalexins formed as a result of microbial infection of the cowpea plant may constitute a basis for induced resistance in the plant against M. testulalis.

Résumé

Un nouveau 6a-hydroxylpterocarpan nommé hildecarpin, a été isolé des racines du Tephrosia hildebrandtii. On lui a donné la structure (−)-3, 6a-dihydroxy-2-methoxy-8, 9-methylenedioxypterocarpan en se basant sur ses valeurs spectroscopiques, sa rotation optique, et ses transformations chimiques. Hildecarpin a montre une activité antiparasitaire contre le rongeur de gousse de legume Maruca testulalis un important insecte nuisible au petit pois (cowpea) Vigna unguiculata, et une activité antimycosique contre Cladosporium cocumerinum. Cette découverte suggère que les phytoalexins du pterocarpan formés à la suite d'une infection microbienne de la plante de petit pois (cowpea) pourrait constituer une base de resistance induite dans la plante contre M. testulalis.

Type
Research Articles
Copyright
Copyright © ICIPE 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bailey, J. A. (1973) Production of antifungal compounds in cowpea (Vigna sinensis) and pea (Pisum sativum) after virus infection. J. gen. Microbiol. 75, 119123.CrossRefGoogle ScholarPubMed
Bevan, C. W. L., Birch, A. J., Moore, B. and Mukerjee, S. K. (1964) A partial synthesis of (−)-pisatin: some remarks on the structure and reactions of pterocarpin. J. chem. Soc. 59915995.CrossRefGoogle Scholar
Bilton, J. N., Debnam, J. R. and Smith, I. M. (1976) 6a-Hydroxypterocarpans from red clover. Phytochemistry 15, 14111412.CrossRefGoogle Scholar
Dale, I. R. and Greenway, P. J. (1961) Kenya Trees and Shrubs, 1st edn.Bucharian's Kenya Estates Limited, Nairobi and Hatchards, London.Google Scholar
Dalziel, J. M. (1955) The Useful Plants of West Tropical Africa, 1st edn.Crown Agents for Overseas Governments and Administrations, London.Google Scholar
De Martinis, C., Mackay, M. F. and Perrin, D. R. (1978) Crystal and molecular structure of pisa tin. J. Cryst. Mol. Struct. 8, 247256.CrossRefGoogle Scholar
Gillet, J. B., Polhill, R. M. and Verdcourt, B. (1971) Flora of Tropical East Africa (Edited by Milne-Redhead, E. and Polhill, R. M.). The Government Printer, Nairobi.Google Scholar
Gomes, C. M. R., Gottlieb, O. R., Marini Bettolo, G. B., Delle Monache, F. and Polhill, R. M. (1981) Systematic significance of flavonoids in derris and lonchocarpus. Biochem. Syst. Ecol. 9, 129147.CrossRefGoogle Scholar
Harborne, J. B. and Ingham, J. L. (1978) Biochemical aspects of the coevolution of higher plants with their fungal parasites. In Biochemical Aspects of Plant and Animal Coevolution (Edited by Harborne, J. B.), p. 343. Academic Press, London.Google Scholar
Homans, A. L. and Fuchs, A. (1970) Direct bioautography on thin-layer chromatograms as a method for detecting fungitoxic substances. J. Chromat. 51, 327329.CrossRefGoogle ScholarPubMed
Ingham, J. L. (1976) Fungal modification of pterocarpan phytoalexins from Melilotus alba and Trifolium pratense. Phytochemistry 15, 14891495.CrossRefGoogle Scholar
Ingham, J. L. and Markham, K. R. (1980) Identification of the Erythrina phytoalexin Cristacarpin and a note on the chirality of other 6a-hydroxypterocarpans. Phytochemistry 19, 12031207.CrossRefGoogle Scholar
Ingham, J. L. and Markham, K. R. (1982) Tephrocarpin, a pterocarpan phytoalexin from Tephrosia bidwilli and a structure proposal for acanthocarpan. Phytochemistry 21, 29692972.CrossRefGoogle Scholar
Kokwaro, J. O. (1976) Medicinal Plants of East Africa, 1st edn. East African Literature Bureau, Nairobi.Google Scholar
Kubo, I. and Nakanishi, K. (1979) Some terpenoid insect antifeedants from tropical plants. In Advances in Pesticide Science (Edited by Geissbuhler, H., Brooks, G. T. and Kearney, P. C.), p. 285. IUPAC Pesticide Chemistry, Pergamon Press, Oxford.Google Scholar
Lampard, J. F. (1974) Demethylhomopterocarpin: an antifungal compound in Canavalia ensiformis and Vigna unguiculata following infection. Phytochemistry 13, 291292.CrossRefGoogle Scholar
Lwande, W., Gebreyesus, T., Chapya, A., MacFoy, C., Hassanali, A. and Okech, M. (1983) 9-Acridone insect antifeedant alkaloids from Teclea trichocarpa bark. Insect Sci. Applic. 4, 393395.Google Scholar
Mitchell, W. J. and Breyer-Brandwijk, M. G. (1962) The Medicinal and Poisonous Plants of Southern and Eastern Africa, 1st edn.Livingstone, London.Google Scholar
Okigbo, B. N. (1978) Grain legumes in the agriculture of the tropics. In Pests of Grain Legumes: Ecology and Control (Edited by Singh, S. R., Emden, H. F. van and Ajibola Taylor, T.), pp. 111. Academic Press, New York.Google Scholar
Perrin, D. D. and Perrin, D. R. (1962) The N.M.R. spectrum of pisatin. J. Am. chem. Soc. 84, 19221925.CrossRefGoogle Scholar
Perrin, D. R. and Bottomley, W. (1962) Studies on phytoalexins. V. The structure of pisatin from Pisum sativum L. J. Am. chem. Soc. 84, 19191922.CrossRefGoogle Scholar
Preston, N. W. (1975) 2'O-Methylphaseollidinisoflavan from infected tissue of Vigna unguiculata. Phytochemistry 14, 11311132.CrossRefGoogle Scholar
Singh, S. R. and Emden, H. F. van (1979) Insect pests of grain legumes. A. Rev. Ent. 24, 255278.CrossRefGoogle Scholar
Willis, J. C. (1973) Dictionary of Flowering Plants and Ferns, 8th edn.The University Press, Cambridge.Google Scholar