Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T13:32:44.340Z Has data issue: false hasContentIssue false

Modelling trypanosomiasis transmission

Published online by Cambridge University Press:  19 September 2011

Paul Milligan
Affiliation:
Department of Biological Sciences, University of Salford, Salford M5 4WT, UK
Get access

Abstract

Simple models can be used to study the effects of factors involved in trypanosomiasis transmission, provided rough parameter estimates are available. The models should also be tested against field data; more complex models are needed whichrelate prevalence to the sensitivity of the diagnostic method, and take account of age-dependent changes in host susceptibility.

Résumé

Les modeles simples pouver ê;tre utiliser étudier les éléments être engagé le transmission des trypanosomes pàthogens des animaux, si les paramêtres approximatif peut éstimer et sont disponsible. Les modèles pouvent assister le comprehension parce qu'ils sont simple et ils manquent les détails mais on peut étudier le situation epidemiologique dans un façon analytique. Les modèles doit être vérifier centre les données obtenont sûr la terrain mais les modèles plus compliquées doivent dévéloper qui pouvent comparer les chiffres de prevalence au sensitivité de la méthod diagnostique aussi incorporer les changes dans le susceptibilité des animaux centre l'àge des hôtes.

Type
Research Article
Copyright
Copyright © ICIPE 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R. M. and May, R. M. (1979) Population biology of infectious diseases. I. Nature 280, 361367.CrossRefGoogle Scholar
Aron, J. L. (1983) Dynamics of acquired immunity boosted by exposure to infection. Math. Biosci. 64, 249259.CrossRefGoogle Scholar
Dillman, J. S. S. and Townsend, A. J. (1979) A trypanosomiasis survey of wild animals in the Luangwa Valley, Zambia. Acta Trop. 36, 349356.Google Scholar
Dwinger, R., Luckins, A. G., Murray, M., Rae, P. and Moloo, S. K. (1985) Interference between different serodemes of Trypanosoma congolense in the establishment of superinfections in goats following tsetse transmission. In ISTCRC 18th meeting, Harare, Zimbambwe, 1985. Nairobi, OAU/STRC, 1985, pp. 9699.Google Scholar
Logan, L. L., Paling, R. W., Moloo, S. K. and Scott, J. R. (1988) Comparative studies on the responses of NDama and Boran cattle to experimental challenge with tsetse-transmitted Trypanosoma congolense. In Livestock Production in Tsetse Affected Areas of Africa. ILCA/ILRAD, Nairobi. pp. 152160.Google Scholar
Maudlin, I. (1982) Inheritance of susceptibility to Trypanosoma congolense infection in Glossina morsitans. Ann. Trop. Med. Parasitol. 76, 225227.CrossRefGoogle ScholarPubMed
May, R. M. (1982) Population biology of microparasitic infections. In Mathematical Ecology (Edited by Hallam, T. G. and Levin, S. A.), Biomathematics Vol. 17, 405442, Springer Verlag.CrossRefGoogle Scholar
Murray, M., Morrison, W. I. and Whitelaw, D. D. (1982) Host susceptibility to African trypanosomiasis: trypanotolerance. Adv. Parasitol. 21, 168.CrossRefGoogle ScholarPubMed
Milligan, P. J. M. (1989) Epizootiology of the trypanosomiases. Ann. Soc. Beige. Med. Trop. 69, Suppl. 1, 8998.Google Scholar
Milligan, P. J. M. and Baker, R. D. (1988) A model of tsetse-transmitted animal trypanosomiasis. Parasitology 96, 211240.CrossRefGoogle Scholar