Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T21:58:02.962Z Has data issue: false hasContentIssue false

Leishmania in kenyan phlebotomine sandflies—IV: Artificial feeding and attempts to infect six species of laboratory-reared sandflies with Leishmania donovani

Published online by Cambridge University Press:  19 September 2011

J. B. Kaddu
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
M. J. Mutinga
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
M. P. Nyamori
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, Kenya
Get access

Abstract

Five (Sergentomyia antennatus, S. garnhami, S. schwetzi, S. ingrami and S. adleri) of the six species of sandflies fed on mammalian blood containing cultured Leishmania donovani promastigotes on day 0, were able to feed through cockerel skin membranes at 5.5, 10, 34.3, 45.7 and 95% feeding rates, respectively. Sergentomyia bedfordi was able to feed on mammalian blood only through a lizard skin membrane at 100% feeding rate. Promastigotes were found in 9.3, 25 and 37.5% of S. schwetzi, S. adleri and S. ingrami respectively, dissected on days 3–9.

The results open way for artificial feeding of Kenyan sandflies on mammalian blood through membranes, and indicate that it is necessary to select the type of membrane depending on sandfly species. The ability of L. donovani to develop in Kenyan sandflies is being investigated to experimentally establish and confirm the importance of various genera and species in the epidemiology of leishmaniasis.

Résumé

Des 6 espèces des mouches nourries sur le sang des mammifères contenant des promastigotes Leishmania donovani en culture au jour zéro, cinq des ces espèces (Sergentomyia antennatus, S. garnhami, S. schwetzi, S. ingrami et S. adleri) étaient capables de s'alimenter à travers les membranes de la peau avec un taux d'alimentation respectif de 5.5, 10, 34.3, 45.7 et 95%. Sergentomyia bedfordi était capable de s'alimenter sur le sang mammalien seulement qu'a travers la membrane de la peau du lézard à un taux de 100%. Les promastigotes étaient trouvés dans 9.3, 25 et 37.5% de S. schwetzi, S. adleri et S. ingrami respectivement, après dissection aux jours 3 et 9.

Les résultats ouvrent une voie artificielle d'alimentation sur le sang mammalien à travers les membranes et indiquent qu'il est nécessaire de sélectionner le type de membrane en concordance avec l'espèce des mouches.

L'habilité de L. donovani à se developper dans les mouches Kenyanes a été étudiée pour établir expérimentalement, et confirmer l'importance de divers generes et espèces dans l'épidemiologie de la leishmaniose.

Type
Research Articles
Copyright
Copyright © ICIPE 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adler, S. (1947) The behaviour of a Sudan strain of Leishmania donovani in Phlebotomus papatasi. A comparison of strains of Leishmania. Trans. R. Soc. trop. Med. Hyg. 40, 701712.CrossRefGoogle Scholar
Adler, S. and Theodor, O. (1929) Attempts to transmit Leishmania tropica by bite: the transmission of L. tropica by Phlebotomus sergenti. Ann. trop. Med. Parasit. 23, 116.CrossRefGoogle Scholar
Beach, R. F., Mutinga, M. J. and Kaddu, J. B. (1982) Laboratory colonization of Phlebotomus martini Parrot 1936 (Diptera: Psychodidae) A vector of visceral leishmaniasis in Kenya. Proceedings of the 3rd Annual Medical Scientific Conference of KEMRI & KETRI, pp. 1986–190.Google Scholar
Beach, R., Young, D. G. and Mutinga, M. J. (1983) New phlebotomine sandfly colonies: rearing Phlebotomus martini, Sergentomyia schwetzi and Sergentomyia africana (Diptera:Psycholidae). J. med. Ent. 20, 579584.CrossRefGoogle Scholar
Hertig, M. and McConnell, E. (1963) Experimental infection of Panamanian Phlebotomus sandflies with Leishmania. Expl Parasit. 14, 92106.CrossRefGoogle ScholarPubMed
Kaddu, J. B. and Mutinga, M. J. (1981) Leishmania in Kenya phlebotomine sandflies—1. Leishmania aethiopica in the midgut of naturally infected Phlebotomus pedifer. Insect Sci. Applic. 2, 245250.Google Scholar
Kaddu, J. B., Mutinga, M. J. and Nyamori, M. P. (1984) Leishmania in Kenyan sandflies, a search for vector. Abstract XI International Congress for Tropical Medicine and Malaria. Calgary, Canada, p. 72.Google Scholar
Kiliick-Kendrick, R. (1979) Biology of Leishmania in phlebotomine sandflies. In Biology of the Kinetoplastida (Edited by Lumsden, W. H. R. and Evans, D. A.), Vol. 2. Academic Press, London.Google Scholar
Lewis, D. J. (1975) Functional morphology of the mouth parts in New World phlebotomine sandflies (Diptera:Psychodidae). Trans. R. ent. Soc. Lond. 126, 497532.CrossRefGoogle Scholar
Mutinga, M. J. and Ngoka, J. M. (1981) Suspected vectors of lizard leishmaniasis in Kenya and their possible role in the partial immunization of the human population against Leishmania donovani in kala-azar endemic areas. Insect Sci. Applic. 1, 207210.Google Scholar
Schlein, Y., Polacheck, I. and Yuval, B. (1985) Mycoses, bacterial infections and antibacterial activity in sandflies (Psychodidae) and their possible role in the transmission of leishmaniasis. Parasitology 90, 5766.CrossRefGoogle ScholarPubMed
Tailor, A. E. R. and Baker, J. R. (1986) The Cultivation of Parasites In Vitro. Blackwell, Oxford.Google Scholar
Ward, R. D., Lainson, R. and Shaw, J. J. (1978) Some methods for feeding of laboratory-reared, neutropical sandflies (Diptera Psychodidae). Ann. trop. Med. Parasit. 72, 270276.CrossRefGoogle ScholarPubMed
World Health Organization (WHO) (1984) Technical Report Series No. 701 p. 139, Geneva.Google Scholar