Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-03T19:26:13.492Z Has data issue: false hasContentIssue false

Influence of host plants on the susceptibility of Myzus persicae (Sulz.) to certain insecticides

Published online by Cambridge University Press:  19 September 2011

H. John Ambrose
Affiliation:
Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore-641 003, India
A. Regupathy
Affiliation:
Department of Agricultural Entomology, Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore-641 003, India
Get access

Abstract

The influence of the host plants tobacco, chilli and brinjal on the susceptibility of Myzus persicae (Sulz.) to five OP insecticides was assessed. The order of toxicity of the insecticides to the aphids on tobacco was monocrotophos > demeton methyl > dimethoate > methamidophos > acephate, on chilli; methamidophos = monocrotophos > demeton methyl = acephate > dimethoate and on brinjal, methamidophos = monocrotophos > acephate > demeton methyl = dimethoate. Among the five insecticides, monocrotophos had the highest inhibitory potency in vitro as indicated by I50 and ka values, followed by demeton methyl, dimethoate, methamidophos and acephate. Electrophoretograms of homogenates of aphids adopted to chilli and brinjal showed a higher activity of the detoxicating enzyme carboxylesterase than found in aphids on tobacco.

Résumé

L' influence des hôtes plantes de tobaco, piment, brinjal en susceptibilité de Myzus persicae (Sulz.) à cinq des insecticides était assimilée. L'ordre de toxicité des insecticides des aphids en tobaco était monocrotophos > demeton-methyl > dimethoate > methamidophos > acephate, en piment; methamidophos = monocrotophos > demeton methyl = acephate > dimethoate et en brinjal methamidophos = monocrotophos > acephate > demeton methyl = dimethoate. Larmi les cinq insecticides monocrotophos avait la plus forte decrorssante potencité en vitro. Comme indiqué par I50 et ka valeur suivie par methyl-demeton, dimethoate, methamidophos et acephate. Electrogrammes de homogenates de aphid en piment et brinjal adaptés aphid viriants montrait plus forte acti vile de detoxication enzymes carboxylesterase que celui de tobacco aphid variant.

Type
Research Articles
Copyright
Copyright © ICIPE 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aldridge, W.N. (1950) Some properties of specific cholinesterase with particular reference to the mechanisms of inhibition by diethyl-p-nitrophenyl thiophosphate (E 605) and analogues. Biochem. J. 46, 451460.CrossRefGoogle Scholar
Anjum, F. and Sultana, H. (1983) Demonstration of selectivity of fenitrothion based on relative responses of brain AChE of bee, fish and rat. Course on Toxicology of Pesticides. Regional Research Laboratory, Hyderabad, pp. 6567.Google Scholar
Beranek, A. P. (1974) Esterase variation and organophosphate resistance in populations of Aphis fabae and Myzus persicae. Entomol. Exp. Appl. 17, 129142.CrossRefGoogle Scholar
Brestkin, A. P., Khovanskikh, A. E., Maizel, E. B., Moralev, S. N., Novazhilov, K. V., Sazonova, I. N., Abduvakhabor, A. A., Godovikov, N. N., Kobachnic, M. I., Khaskin, B. A., Mastryukova, T. A. and Shipov, A. E. (1986) Cholinesterase of aphids — II, anticholinesterase potency and toxicity of different organophosphorus inhibitors for spring grain aphid Schizaphis gramina Rond, insect Biochem. 16, 701707.CrossRefGoogle Scholar
Dakshinamoorthy, N. K., Jayaraj, S. and Dhandapani, N. (1981) Compatibility of insecticides and fungicides for the control of chilli white aphid, die back and leaf spot diseases. Indian J. Plant Prot. 9, 173176.Google Scholar
Devonshire, A. L. (1977) The properties of carboxylesterase from the peach-potato aphid, Myzus persicae (Sulz.) and its nature in conferring insecticide resistance. Biochem. J. 167, 675683.CrossRefGoogle Scholar
Devonshire, A. L. and Moores, G. D. (1982) A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate and pyrethroid resistance in peach-potato aphids (Myzus persicae). Pestic. Biochem. Physiol. 18, 235246.CrossRefGoogle Scholar
Devonshire, A. L. and Moores, G. D. (1984) Different forms of insensitive acetylecholinesterase in insecticide resistant houseflies (Musca domestica). Pestic. Biochem. Physiol. 21, 336340.CrossRefGoogle Scholar
Dhandapani, N. and Jayaraj, S. (1981) Influence of host plants on the control of green peach aphid Myzus persicae (Sulz.) with different chemicals. Curr. Sci. 50, 829831.Google Scholar
Dhandapani, N. and Jayaraj, S. (1982) Effect of chilli seedling root dip in insecticides for the control of sucking pests. Pestology 6, 510.Google Scholar
FAO (1979) Recommended methods for the detection and measurement of resistance of agricultural pests to pesticides. Method for adult aphids — FAO Method No. 17, FAO Plant Prot. Bull. 27, 2932.Google Scholar
Finney, D. J. (1952) Statistical method in biological assay. Charles Griffin and Company Limited, London.Google Scholar
Guzman-Varon, R., Monroe, R. J. and Guthrie, F. E. (1974) Evaluation of cholinesterase in strains of Heliothis virescens with widely differing responses to insecticides. J. econ. Entomol. 67, 187189.CrossRefGoogle ScholarPubMed
Hackman, R. H. (1980) Biochemical methods (Proteins). In Cuticle Techniques in Arthropods (Edited by Miller, T. A.), pp. 152155. Springer-Verlag, New York.Google Scholar
Kandasamy, C. (1985) Studies on the pests and diseases of chilli (Capsicum annum L.) and their management. M.Sc.(Ag.) Thesis, Tamil Nadu Agric. University, Coimbatore.Google Scholar
Kao, T. S. and Fukuto, T. R. (1977) Metabolism of 0, S-dimethyl, propionyl-and hexanoylphosphoroamidothioate in the housefly and white mouse. Pestio. Biochem. Physiol. 7, 8395.CrossRefGoogle Scholar
Kareem, A. A., Thangavel, P. and Balasubramanian, M. (1977) Studies on the chemical control of green peach aphid, Myzus persicae Sulz. on chillies. Madras agric. J. 64, 202204.Google Scholar
Hille Ris Lambers, D. (1966) Polymorphism in Aphididae. Annu. Rev. Entomol. 11, 4748.CrossRefGoogle Scholar
Lovel, J. B. (1963) The relationship of anticholinesterase activity penetration and insect and mammalian toxicity of certain organophosphorus compounds. J. Econ. Entomol. 56, 300317.Google Scholar
Lowe, H. J. B. (1983) Variation in Myzus persicae (Sulzer) (Hemiptera: Aphididae) reared on different host plants. Bull. entomol. Res. 62, 549556.CrossRefGoogle Scholar
Magee, P. S. (1982) Structure-activity relationships in phosphoramidates. In Insecticide Mode of Action (Edited by Coats, J. R.), pp. 101155. Academic Press.CrossRefGoogle Scholar
Pandey, G. C. and Agarwal, R. A. (1982) In vitro inhibition of acetylcholinesterase in head and body wall of Tryporyza nivella (Fabr.) following treatment with organophosphorus and carbamate insecticides. Entomol. 7, 123131.Google Scholar
Rajagopal, S. (1978) Studies on the biology of white aphid Myzus persicae (Sulzer) (Aphididae: Hemiptera) on certain host plants with special reference to chillies (Capsicum annum). M.Sc.(Ag.) Thesis, Tamil Nadu Agriculture University, Coimbatore.Google Scholar
Ramasamy, K. (1980) On the mechanism of cellulose degradation by a pseudomonas isolated from activated sludge. Agriculture 28, 507508.Google Scholar
Renval, S. and Akerblom, M. (1971) Determination of organophosphorus pesticide residue in fruits and vegetables on the Swedish market from 1964 to 1966. Res. Rev. 34, 126.Google Scholar
Richardson, H. H. and Casanges, A. H. (1942) Studies of nicotine as an insect fumigant. J. Econ. Entomol. 35, 242266.CrossRefGoogle Scholar
Saivaraj, K., Kumarasamy, T. and Jayaraj, S. (1979) Evaluation of certain new insecticides for the control of green peach aphid Myzus persicae (Sulz.) on chillies. Pesticides 13, 2021.Google Scholar
Sawicki, R. M. and Rice, A. D. (1978) Response of susceptible and resistant peach-potato aphids Myzus persicae (Sulz.) to insecticides in leafdip bioassays. Pestic. Sci. 9, 513516.CrossRefGoogle Scholar
Sawicki, R. M., Devonshire, A. L., Rice, A. D., Moores, G. D., Petzing, S. M. and Cameron, A. (1978) The detection and distribution of organophosphorus and carbamate insecticide-resistant Myzus persicae (Sulz.) in Britain in 1976. Pestic. Sci. 9, 189201.CrossRefGoogle Scholar
Suksayetrup, P. and Plapp, F. W. Jr (1977) Mechanism by which methamidophos and acephate circumvent resistance. J. Agric. Food Chem. 25, 481485.CrossRefGoogle Scholar
Takada, H. (1981) Inheritance of body colours in Myzus persicae (Sulzer) (Homoptera: Aphididae). Appl. Entomol. 2001, 16, 242–246.Google Scholar
van Emden, H. F., Eastop, V. S., Hughes, R. D. and Way, M. J. (1969) The ecology of Myzus persicae. Annu. Rev. Entomol. 14, 197.CrossRefGoogle Scholar
Weber, G. (1985) Population genetics of insecticide resistance in the green peach aphid, Myzus persicae (Sulz.) (Homoptera: Aphididae). Z. angew. Entomol. 99, 408421.CrossRefGoogle Scholar