Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T11:54:26.969Z Has data issue: false hasContentIssue false

Incidence of Greenbug, Schizaphis graminum (Rondani) (Homoptera: Aphididae) in Pakistan and resistance in wheat against it

Published online by Cambridge University Press:  19 September 2011

C. Inayatullah
Affiliation:
National Agricultural Research Centre Islamabad, Pakistan
M. Nahid Ehsan-Ul-Haq
Affiliation:
National Agricultural Research Centre Islamabad, Pakistan
M. F. Chaudhry
Affiliation:
National Agricultural Research Centre Islamabad, Pakistan
Get access

Abstract

Greenbug, Schizaphis graminum (Rondani), an important vector of barley yellow dwarf mosaic virus, is a major pest of cereals in many countries. A preliminary survey conducted in the Punjab and North Western Frontier Province of Pakistan revealed medium to heavy infestations at Charsadda (density 12 apterous greenbugs/25 plants), Sher Shah (Multan) (density 33) and Malkot (Murree) (density 114). However, it was found in small numbers at many other locations.

A culture of greenbugs collected from Charsadda, was established on susceptible wheat cultivar Faisalabad-83 at 27 ± 3°C, 60% r.h. and 16:8 hr day:night regime. A seedling bulk test using local and exotic host differentials indicated that DS-28A and Largo wheat were susceptible, whereas Amigo wheat, Post and Will barley were resistant. This indicates that the population of greenbug from Charsadda culture was different from greenbug biotypes occurring in the USA. Therefore, it was designated as biotype PK-I for future reference.

Of the 44 recommended wheat cultivars in Pakistan, Punjab-85 was found to be resistant (visual damage rating (DR) 3 at 0 to 9 damage scale; 0, healthy; 9, dead). Faisalabad-85 had a DR of 4, PARI-73, Sandal and Yecora had a DR of 5, and PAK-81, WL-711, Sutluj-86 and Nuri-70 had a DR of 6. All the remaining cultivars were highly susceptible to greenbug (DR ≻ 6).

Three tests, namely, antixenosis (non-preference), antibiosis and tolerance, were conducted to determine the nature of resistance in selected entries. In the antixenosis test, PARI-73, WL-711 and Yecora were found to be the least preferred. The lowest fecundity (antibiosis) of the greenbug was on Punjab-85. In the tolerance test, the lowest damage was recorded on PARI-73 (DR= 4.1), followed by Sandal (DR= 4.8) and Punjab-85 (DR= 4.8). These three tests indicated that resistance in Punjab-85 is mainly due to antibiosis and a low level of tolerance.

During this study 439 native wheat germplasm lines were also tested. Of these, 16 germplasm lines (PAK 15081, PAK 15115, PAK 15139, PAK 15242, PAK 15433, PAK 15479, PAK 15481, PAK 15519, PAK 15992, PAK 15994, PAK 15995, PAK 15997, PAK 16007, PAK 16008, PAK 16010 and PAK 16190) were found to have a high level of resistance (DR ≺ 3). Of the test entries, 114 were moderately resistant (DR= 4–6) and the remainder were susceptible (DR ≻ 6) to greenbug. The germplasm lines found resistant may have different genes for resistance which can be exploited in breeding programmes.

Résumé

Importance de la punaise, Schizaphis graminum (Rondani), (Homoptera: Aphididae) au Pakistan et résistance du blé vis à vis du ravageur.

La punaise, S. graminum (Rondani), important vecteur de la mosaïque naisante de l'orge, est un des principaux ravageurs des céréales dans de nombre pays. Un enquête préliminaire conduite dans le Punjab et dans le Nord Ouest de la province frontaliére du Pakistan a revelé que ses infestations varient de moyen à sevére à Charsadda (densité de 12 aptères/25 plantes), à Sher Shah, Multan (densité de 33) et à Malkot, Muree (densité de 114). Cependant elie présente en petit nombre dans beaucoup d'autres localités.

Un élevage des puniases recoltées à Charsadda a été realisé sur une varieté sensible de blé, Faisalabad-83, à 27 °C, 60% d'humidité relative et 16 heures d'éclairement. Un test utilisant une gamme differentielle de variétés locales et introduites a revelé que les variété de blé DS-28 et Largo étaient sensibles tandis que Amigo, et les variétés d'orge Post et Will sont résistantes à la population locale de la puniase. Tout ceci indique que cette population locale est différente des biotypes présentes aux USA. Aussi elle est désignée biotype PK-1 pour reference future.

Sur les 44 variétés de blé proposées à la vulgarisation aii Pakistan, Punjab-85 a été reconnue pour sa résistance (score visuel 3) sur une échelle de 0 à 9 (0 = sain et 9 = mort), Faisalabad-85 a une score de 4, PARI-73, Sandal et Yecora, un score de 5, et PAK-81, WI-711, Suttluj-86 et Nuri-70, un score de 6. Toutes les autres variétés sont hautement sensibles (score ≻ 6).

Trois tests portant sur I'antixenosis, l'antibiosis et la tolérance ont été conduits pour déterminer la nature de la résistance des variétés. Pour l'antixenosis (non preference), PARI-73, WI-711 et Yecora sont les moins préférées de l'insect. Le plus faible taux de fécondité (antibiosis) de la punaise a été observée sur Punjab-85. Dans le test de tolerance, PARI-73 (score = 4.1), Sandal (score = 4.8) et Punjab-85 (score = 4.8) ont enregistré les attaques les plus faibles.

Ces 3 tests indiquent que la résistance de Punjab-85 est essentiellement due à l'antibiosis et à un niveau bas de tolerance.

Au cours de cette étude, 439 lignés locales provenant du germplasme de blé ont été également testées. De celles-ci, 16 lignés (PAK 15081, PAK 15115, PAK 15139, PAK 15242, PAK 15433, PAK 15479, PAK 15481, PAK155 19, PAK 15992, PAK 15994, PAK 15995, PAK 15597, PAK16007, PAK 16008, PAK 16010 et PAK 16190) ont un dégré de résistance élevé (score ≺ 3); 114 lignés sont moderement résistantes (score = 4.6) tandis que le reste des lignés sont susceptibles (score ≻ 6).

Les lignés résistantes pourraient avoir des génes differents de résistance pouvant être exploitérs dans un programme de selection.

Type
Research Articles
Copyright
Copyright © ICIPE 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Araya, J. E., Fereres, A. and Foster, J. E. (1987) Progress report on the distribution of the Russian wheat aphid, Diuraphis noxia, in the United States. FAO Plant Prot.Bull. 35, 7982.Google Scholar
Burton, R. L. (1986) Effect of greenbug (Homoptera: Aphididae) damage on root and shoot biomass of wheat seedlings. J. econ. Entomol. 79, 633636.CrossRefGoogle Scholar
Carter, N., Dixon, A. F. G. and Rabbinge, R. (1982) Cereal aphid populations: biology, simulation and prediction. Wageningen Centre Agric. Pub. Doc. Netherlands.Google Scholar
Das, B. (1918) The Aphididae of Lahore. Mem. Indian Museum. 6, 138274.Google Scholar
Dixon, A. F. G. (1987) Cereal aphids as an applied problem. Agric. Zool. Rev 2, 157.Google Scholar
Duncan, D. B. (1955) Multiple range and multiple F tests. Biometrics 11, 142.CrossRefGoogle Scholar
Eastop, V. F. (1973) Biotypes of aphids. In Perspectives in Aphid Biology (Edited by Lowe, A. D.), pp. 4051. Bulletin No. 2, The Entomological Society of New Zealand (Inc.). Caxton Press, Christchurch, New Zealand.Google Scholar
Franzmann, B. A. (1973) Field studies of aSchizaphis on pangola grass in North Queensland. J. Agric. Anim. Sci. 30, 8589.Google Scholar
Gavarra, M. R. and Eloja, A. L. (1969) Further studies on the aphid vectors of the abaca mosaic virus, II. Experimental transmission of the abaca mosaic virus by Schizaphis cyperi (van der Gott) and S. graminum Rondani. Philip. J. Plant Indus. 34, 8996.Google Scholar
Hamid, S. (1983) Natural balance of graminicolous aphids in Pakistan: survey of populations. Agronomie 3, 665673.CrossRefGoogle Scholar
Inayatullah, C. (1985) Greenbug biotypes in relation to host plant resistance. USDA & Oklahoma State University, Stillwater.Google Scholar
Kazanok, G. T. (1986) Pests of rice crops. Zash. Rast. 3, 20 [In Russian].Google Scholar
Kindler, S. D. and Spomer, S. M. (1986) Biotype status of six greenbug (Homoptera: Aphididae) isolates. Environ. Entomol. 15, 567572.CrossRefGoogle Scholar
Komblas, K. N. and Long, W. H. (1972) Field studies of aphid vectors of sugar-cane mosaic. J. econ. Entomol. 65, 439445.CrossRefGoogle Scholar
Lefroy, H. M. (1909) Indian Insect Life Thacker, Spink & Co., Calcutta, India.Google Scholar
Myrzin, A. S. and Shilovskii, V. N. (1983) The reaction of the varieties to infestation byaphids. Zash. Rast. 12, 3233 [In Russian].Google Scholar
Nault, L. R., Harlan, H. J. and Findley, W. R. (1971) Comparative susceptibility of corn toaphid and mechanical inoculation of maize dwarf mosaic virus. J. econ. Entomol. 64, 2123.CrossRefGoogle Scholar
Ossiannilsson, F. (1948) Ett for vart land ny tt skadedjur pa gras. Vaxtskyddsnotiser. 5, 7980.Google Scholar
Peters, D. C., Wood, E. A. Jr and Starks, K. J. (1975) Insecticide resistance in selectionsof the greenbug. J. econ. Entomol 68, 339340.CrossRefGoogle ScholarPubMed
Pettersson, J. (1971) Studies on four grass-inhabiting species of Schizaphis (Horn.: Aph.). HI. (a) Host plants. Swedish J. Agric. Res. 1, 133138.Google Scholar
Plumb, R. T. (1983) Barley yellow dwarf virus—a global problem. In Plant Virus Epidemiology: The Spread and Control of Insect-Borne Viruses. (Edited by Plumb, R. T. and Thresh, J. M.), pp. 185198. Blackwell Sci. Pub., Oxford.Google Scholar
Porter, K. B., Peterson, G. L. and Vise, O. (1982) A new greenbug biotype. Crop Sci. 22, 847850.CrossRefGoogle Scholar
Potter, D. A. (1982) Greenbugs on turfgrass: an informative update. Am. Lawn Appl. 3, 2025.Google Scholar
Starks, K. J. and Burton, R. L. (1977) Greenbugs: determining biotypes, culturing, and screening for plant resistance with notes on rearing parasitoids. USDA, ARS, Tech. Bull. No. 1556.Google Scholar
Starks, K. J., Burton, R. L. and Merkle, O. G. (1983) Greenbugs (Homoptera: Aphididae) plant resistance in small grains and sorghum to biotype E. J. econ. Entomol. 76, 877880.CrossRefGoogle Scholar
Tyler, J. M., Webster, J. A. and Merkle, O. G. (1987a) Designations for genes in wheat germplasm conferring greenbug resistance. Crop Sci. 27, 526527.CrossRefGoogle Scholar
Tyler, J. M., Webster, J. A. and Merkle, O. G. (1987b) Identification of rye genotypes resistant to biotypes B, C, E and F of the greenbug. Euphytica 37, 6568.CrossRefGoogle Scholar
Ullah, G. (1940) Studies on the Indian Aphididae. 1. The aphid fauna of Delhi. Indian J. Entomol. 2, 1325.Google Scholar
Webster, J. A. and Inayatullah, C. (1984) Greenbug (Homoptera: Aphididae) resistance in triticale. Environ. Entomol. 13, 444447.CrossRefGoogle Scholar
Webster, J. A. and Inayatullah, C. (1985) Aphid biotypes in relation to plant resistance: a selected bibliography. Southwest Entomol. 10, 116125.Google Scholar
Webster, J. A. and Inayatullah, C. (1988) Assessment of experimental designs for greenbug (Homoptera: Aphididae) antixenosis tests. J. econ. Entomol. 81, 12461250.CrossRefGoogle Scholar
Webster, J. A. and Starks, K. J. (1987) Fecundity of Schizaphis graminum and Diuraphis noxia (Homoptera: Aphididae) at three temperature regimes. J. Kansas Entomol. Soc. 60, 580582.Google Scholar
Webster, J. A., Inayatullah, C. and Merkle, O. G. (1986) Susceptibility of largo wheat to biotype B greenbug (Homoptera: Aphididae). Environ. Entomol. 15, 700702.CrossRefGoogle Scholar
Wiktelius, S. and Pettersson, J. (1985) Simulation of bird cherry-oat aphid population dynamics: a tool for developing strategies for breeding aphid resistantplants. Agric. Ecosyst. Environ. 14, 159170.CrossRefGoogle Scholar
Wood, E. A. Jr (1961) Biological studies of a new greenbug biotype. J. econ. Entomol. 54, 11711173.CrossRefGoogle Scholar