Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T07:19:42.389Z Has data issue: false hasContentIssue false

Impact of a Habitat Management System on Diversity and Abundance of Maize Stemborer Predators in Western Kenya

Published online by Cambridge University Press:  19 September 2011

Charles A. O. Midega
Affiliation:
International Centre of Insect Physiology and Ecology P. O. Box 30772–00100 Nairobi, Kenya
Zeyaur R. Khan
Affiliation:
International Centre of Insect Physiology and Ecology P. O. Box 30772–00100 Nairobi, Kenya
Get access

Abstract

Studies were conducted in farmer's field, Lambwe School of the Deaf, and Mbita Point Field Station of ICIPE (ICIPE-Mbita) in western Kenya during the long rains of 2001 and 2002 to assess the impact of a diversionary stemborer management strategy on the pest's predators. Treatments consisted of a maize monocrop (control) and an intercrop of maize and desmodium, Desmodium uncinatum Jacq., with Napier grass, Pennisetum purpureum (Schumach), as trap crop around the field (‘push-pull’) in the farmer's field and Lambwe School of the Deaf. Sudan grass, Sorghum vulgare sudanense (Pers.), was used in place of Napier on the station. A combination of sticky traps, direct observation and hand-collection methods were employed. Predator groups encountered included 12 families from 7 insect orders and 4 families from one arachnid order, with most of the foregoing represented in both maize monocrop and ‘push-pull’ plots. A Cheilomenes sp. and Chrysopa sp. were, however, recovered from ‘push-pull’ plots only. Ants, earwigs and spiders were the main predators encountered. Both overall and individual group populations of these predators as well as ant diversity were significantly higher in ‘push-pull’ than monocrop plots in all the sites during the vegetative, flowering and mature maize growth stages (P < 0.05, t-test). The results thus indicate a numerical enhancement of stemborer predators by use of this habitat management system.

Résumé

Des expérimentations ont été conduites dans des parcelles paysannes, à l'école des sourds de Lambwe et sur la station de recherche de l'ICIPE-Mbita Point, situées à l'Ouest du Kenya, pendant la grande saison des pluies de 2001 et de 2002, afin d'évaluer l'impact de diverses stratégies de gestion des lépidoptères foreurs sur leurs prédateurs. Les traitements consistent en une culture de maïs seul (témoin) et en une culture associée de maïs et de desmodium, Desmodium uncinatum Jacq., à laquelle on associe du pennisetum Pennisetum purpureum (Schumach) comme plante piège autour de la culture (‘push-pull’) dans les parcelles paysannes et à l'école de Lambwe. L'herbe du Soudan, Sorghum vulgare sudanense (Pers.), remplace le pennisetum sur la station de l'ICIPE. Diverses méthodes d'observation ont été utilisées consistent en des pièges englués, des observations directes et des récoltes manuelles. Les prédateurs rencontrés comprennent 12 families appartenant à 7 ordres d'insectes et 4 families appartenant à 4 ordres d'arachnides, présents aussi bien dans les cultures de maïfs seul que dans les cultures associées (‘push-pull’). Les espèces Cheilomenes sp. et Chrysopa sp. n'ont toutefois été retrouvées que dans les cultures associées. Les fourmis, les perce-oreilles et les araignées sont les principaux prédateurs rencontrés dans les parcelles. Aussi bien le nombre total que les effectifs de chacun de ces groupes de prédateurs, ainsi que la diversité des fourmis sont significativement plus élevés dans les cultures associées que dans les cultures de maïs seul, danstous les sites étudiés, pendant les phases végétatives, de floraison et de maturation du maïs (P < 0.05, t-test). Les résultats montrent que l'utilisation de ce système de gestion des cultures (‘push-pull’) permet d'augmenter le nombre de prédateurs des foreurs.

Type
Research Articles
Copyright
Copyright © ICIPE 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ampofo, J. K. O. (1986) Maize stalk borer (Lepidoptera: Pyralidae). Damage and plant resistance. Environ. Entomol. 15, 11241129.CrossRefGoogle Scholar
Andow, D. A. (1991) Vegetational diversity and arthropod population response. Annu. Rev. Entomol. 36, 561586.CrossRefGoogle Scholar
Bonhof, M. J. (2000) The impact of predators of maize stemborers in coastal Kenya. PhD dissertation, Wageningen Agricultural University, Netherlands, 181 pp.Google Scholar
Bonhof, M. J., Overholt, W. A., van Huis, A. and Polaszek, A. (1997) Natural enemies of maize stemborers in East Africa: A review. Insect Sci. Applic. 17, 1935.Google Scholar
Byerlee, D. and Heisey, P. W. (1997) Evolution of the Africa maize economy, pp. 922. In Africa's Emerging Maize Revolution (Edited by Byerlee, D. and Eicher, C. K.). Lynee Riener, London.CrossRefGoogle Scholar
Chitere, P. O. and Omolo, B. A. (1993) Farmers' indigenous knowledge of crop pests and their damage in western Kenya. Int. J. Pest Manage. 39, 126132.CrossRefGoogle Scholar
Corbett, A. (1991) Spatial dynamics of natural enemies in diversified agroecosystems: Experimental studies with alfalfa/cotton intercropping system and investigations with a theoretical model. PhD dissertation, University of California at Davis and San Diego State University. 180 pp.Google Scholar
Cromartie, W. J. Jr (1981) The environmental control of insects using crop diversity, pp. 223251. In Handbook of Pest Management in Agriculture (vol. III) (Edited by Pimentel, D.). CRC Press, Boca Raton, Florida.Google Scholar
Dwumfour, E. F. (1990) Predators of Chilo partellus. ICIPE 18th Annual Report, 1990. ICIPE, Nairobi, pp. 3236.Google Scholar
Dwumfour, E. F., Owino, J. and Andere, M. (1991) Discovery capacity by parasitoids and predators of Chilo partellus eggs. ICIPE 19th Annual report, 1991. ICIPE, Nairobi, pp. 2324.Google Scholar
Ebenebe, A. A., van den Berg, J. and van der Linde, T. C. (2001) Farm management practices and farmers' perceptions of stalk-borers of maize and sorghum in Lesotho. Int. J. Pest Manage. 47, 4148.CrossRefGoogle Scholar
[FAO] Food and Agriculture Organisation (1998) FAO statistical databases, http://apps.fao.orgGoogle Scholar
Fye, R. E. and Carranza, R. L. (1972) Movement of insect predators from grain sorghum to cotton. Environ. Entomol. 1, 790791.CrossRefGoogle Scholar
Grisley, W. (1997) Crop pest yield loss: A diagnostic study in the Kenya highlands. Int. J. Pest Manage. 43, 137142.CrossRefGoogle Scholar
Kfir, R., Overholt, W. A., Khan, Z. R. and Polaszek, A. (2002) Biology and management of economically important lepidopteran cereal stemborers in Africa. Annu. Rev. Entomol. 47, 701731.CrossRefGoogle Scholar
Khan, Z. R., Ampong-Nyarko, K., Chiliswa, P., Hassanali, A., Kimani, S., Lwande, W., Overholt, W. A., Pickett, J. A., Smart, L. E., Wadhams, L. J. and Woodcock, C. M. (1997a) Intercropping increases parasitism of pests. Nature (London) 388, 631632.CrossRefGoogle Scholar
Khan, Z. R., Chiliswa, P., Ampong-Nyarko, K., Smart, L. E., Polaszek, A., Wandera, J. and Mulaa, M. A. (1997b) Utilisation of wild gramineous plants for the management of cereal stemborers in Africa. Insect Sci. Applic. 17, 143150.Google Scholar
Khan, Z. R., Hassanali, A., Overholt, W., Khamis, T. M., Hooper, A. M., Pickett, A. J., Wadhams, L. J. and Woodcock, C. M. (2002) Control of witchweed Striga hermonthica by intercropping with Desmodium spp., and the mechanism defined as allelopathic. J. Chem. Ecol. 28, 18711885.CrossRefGoogle ScholarPubMed
Khan, Z. R., Pickett, J. A., van den Berg, J., Wadhams, L. J. and Woodcock, C. M. (2000) Exploiting chemical ecology and species diversity: Stemborer and striga control for maize and sorghum in Africa. Pest Manage. Sci. 56, 957962.3.0.CO;2-T>CrossRefGoogle Scholar
Khan, Z. R., Pickett, J. A., Wadhams, L. J. and Muyekho, F. (2001) Habitat management strategies for the control of cereal stemborers and striga in maize in Kenya. Insect Sci. Applic. 21, 375380.Google Scholar
Leigh, T. E., Grimes, D. W., Dickens, W. L. and Jackson, C. E. (1974) Planting pattern, plant population, irrigation and insect interactions in cotton. Environ. Entomol. 3, 492496.CrossRefGoogle Scholar
Midega, C. A. O. (2001) Assessment of the impact of agroforestry and intercropping on maize stemborer, leucaena psyllid and their natural enemies at the Kenyan coast. MSc dissertation, Kenyatta University, Kenya. 118 pp.Google Scholar
Mohyuddin, A. I. and Greathead, D. J. (1970) An annotated list of the parasites of graminaceous stemborers in East Africa, with a discussion of their potential in biological control. Entomophaga 15, 241274.CrossRefGoogle Scholar
Oloo, G. W. (1989) The role of local natural enemies in population dynamics of Chilo partellus (Sinh.) (Pyralidae) under subsistence farming systems in Kenya. Insect Sci. Applic. 10, 243251.Google Scholar
Peck, S. L., McQuaid, B. and Campbell, C. L. (1998) Using ant species (Hymenoptera: Formicidae) as biological indicator of agroecosystem condition. Environ. Entomol. 27, 11021110.CrossRefGoogle Scholar
Pollard, E. (1971) Hedges VI. Habitat diversity and crop pests: A study of Brevicoryne brassicae and its syrphid predators. J. Appl. Ecol. 5, 109123.CrossRefGoogle Scholar
Price, P. W. (1975) Insect Ecology. John Wiley & Sons, New York, Chichester, Brisbane, Toronto. 514 pp.Google Scholar
Price, P. W., Bouton, C. E., Gross, P., McPheron, B. A., Thompson, J. N. and Weis, A. E. (1980) Interaction among three trophic levels: Influence of plants on interactions between insect herbivores and natural enemies. Annn. Rev. Ecol. Syst. 11, 4165.CrossRefGoogle Scholar
Russel, E. P. (1989) Enemies hypothesis: A review of the effect of vegetational diversity on predatory insects and parasitoids. Environ. Entomol. 18, 590599.CrossRefGoogle Scholar
SAS Institute (2000) SAS User's Guide. Statistics, version 8.1 ed. SAS Institute, Cary, NC.Google Scholar
Seshu Reddy, K. V. (1983) Studies on the stemborer complex in Kenya. Insect Sci. Applic. 4, 310.Google Scholar
Seshu Reddy, K. V. and Sum, K. O. S. (1991) Determination of economic injury level of the stemborer, Chilo partellus (Swinhoe) in maize (Zea mays L.). Insect Sci. Applic. 12, 269274.Google Scholar
Seshu Reddy, K. V., Sum, K. O. S. and Lubega, M. C. (1989) Empirical models for predicting yield loss in sorghum caused by Chilo partellus Swinhoe. Discovery and Innovation 1, 9094.Google Scholar
Shannon, C. E. and Weaver, W. (1949) The Mathematical Theory of Communication. The University of Illinois Press, Urbana, IL. 114 pp.Google Scholar
van den Berg, J. and Nur, A. F. (1998) Chemical control, pp. 319332. In African Cereal Stemborers. Economic Importance, Taxonomy, Natural Enemies and Control (Edited by Polaszek, A.). International Institute of Entomology, CAB International, Wellington, Oxon, United Kingdom.Google Scholar
van den Berg, J., Nur, A. F. and Polaszek, A. (1998) Cultural control, pp. 333349. In African Cereal Stemborers. Economic Importance, Taxonomy, Natural Enemies and Control (Edited by Polaszek, A.). International Institute of Entomology, CAB International, Wellington, Oxon, United Kingdom.Google Scholar
van Driesche, R. G. and Bellows, T. S. Jr (Eds) (1996) Biological Control. Chapman and Hall, New York. 539 pp.CrossRefGoogle Scholar
Wang, C., Strazanac, J. and Butler, L. (2000) Abundance, diversity and activity of ants (Hymenoptera: Formicidae) in oak-dominated mixed Appalachian forests treated with microbial pesticides. Environ. Entomol. 29, 579586.CrossRefGoogle Scholar
Warui, C. M. and Kuria, J. N. (1983) Population incidence and the control of maize stalkborers Chilo partellus Strand and Chilo orichalcocilliellus Strand and Sesamiae calamistis Hmps in Coast province, Kenya. Insect Sci. Applic. 4, 1118.Google Scholar
Weeks, R. D. Jr and Holtzer, T. O. (2000) Habitat and season in structuring ground-dwelling spider (Araneae) communities in a shortgrass steppe ecosystem. Environ. Entomol. 29, 11641172.CrossRefGoogle Scholar