Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T20:56:09.532Z Has data issue: false hasContentIssue false

Host susceptibility to infestation with Amblyomma hebraeum

Published online by Cambridge University Press:  19 September 2011

R. A. I. Norval
Affiliation:
Department of Infectious Diseases, College of Veterinary Medicine, University of Florida, Building 471, Mowry Rd, Gainesville, FL 32611-0633, USA
Get access

Abstract

Amblyomma hebraeum differs from many ixodid tick species in that it is not susceptible to the direct effects of the host immune response. All stages of the life cycle are able to feed repeatedly on laboratory hosts and show no progressive declines in engorged weight. However, on cattle there are declines in the yield of engorged adult females over time, as animals become sensitized to the tick and grooming increases. In the field zebu, Bos indicus and sanga, B. indicus x B. taurus breeds of cattle become less heavily infested than B. taurus breeds. The apparent resistance of zebu and sanga breeds is the result of learned tick avoidance behaviour, skin sensitivity and the ability to dislodge ticks prior to attachment as well as grooming ability. Among other Amblyomma spp., the feeding of A. americanum is adversely affected by acquired host immunity, while that of A. variegatum is generally unaffected.

Résumé

Amblyomma hebraeum diffère de beaucoup d'espèces de tiques ixodides en ce sens qu'elle n'est pas susceptible aux effets directs de la réponse immune de l'hôte. Toutes les étapes du cycle de vie peuvent se nourrir à plusieurs reprises d'hôtes laboratoires et ne montrent pas de baisses progressives de poid quand elles sont pleines. Cependant, sur les boeufs il y a au cours du temps des déclins de rendement de femelles adultes pleines, comme les animaux se sensibilisent à la tique et le pansement s'augmente. Aux champs, les races de boeufs zebu, Bos indicus et les sanga, B. indicus x B. taurus deviennent moins infestés que les races B. taurus. La résistance apparente des races zebu et sanga est le résultat d'un comportement appris de l'évasion de tiques, de la sensibilité de la peau et de la capacité de détacher les tiques avant qu'elles ne s'attachent, de même que de l'habilité de se panser. Entre d'autres espèces d'Amblyomma, l'immunité acquise sur le part de l'hôte produit un effet défavorable sur le parasitisme d'A. americanum, tandis qu'en général elle ne produit aucun effet sur celui d'A. variegatum.

Type
Natural Resistance to Ticks
Copyright
Copyright © ICIPE 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, J. R. (1987) Immunology, immunopathology, and immunoprophylaxis of tick and mite infestations. In Immune Responses in Parasitic Infections: Immunology, Immunopathology, and Immunoprophylaxis (Edited by Soulsby, E. J. L.), pp. 141174. Volume IV: Protozoa, arthropods, and invertebrates. CRC Press, Inc. Boca Raton, Florida.Google Scholar
Barre, N. (1989) Biologie et ecologie de la tique Amblyomma variegatum (Acarina: Ixodina) en Guadeloupe (Antilles Francaise). Ph.D. dissertation, Universite de Paris-Sud, I.E.M. V.T., Paris.Google Scholar
Bonsma, J. C. (1944) Hereditary heartwater-resistant characters in cattle. Farming Sth Afr. 19, 7196.Google Scholar
Bonsma, J. C. (1981) Breeding tick repellent cattle. In Tick Biology and Control (Edited by Whitehead, G. B. and Gibson, J. D.), pp. 6777. Rhodes University, Grahamstown, South Africa.Google Scholar
Brown, S. J. and Knapp, F. W. (1981) Response of hypersensitized guinea pigs to the feeding of Amblyomma americanum ticks. Parasitology 83, 213223.CrossRefGoogle Scholar
Brown, S. J., Barker, R. W. and Askenase, P. W. (1984) Bovine resistance to Amblyomma americanumticks: An acquired immuneresponse characterized by cutaneous basophil infiltrates. Vet. Parasitol. 16, 147165.CrossRefGoogle Scholar
Fivaz, B. H. and Norval, R. A. I. (1989) Observations on successive infestations of the rabbit host by the ticks Rhipicephalus appendiculatus and R. zambeziensis (Acari: Ixodidae). Exp. Appl. Acarol. 7, 267279.CrossRefGoogle Scholar
George, J. E., Osbum, R. L. and Wikel, S. K. (1985) Acquisition and expression of resistance by Bos indicus and Bos indicus x Bos taurus calves to Amblyomma americanum infestation. J. Parasitol. 71, 174182.CrossRefGoogle ScholarPubMed
Heller-Haupt, A., Varma, M. R. G., and Langi, A. O. (1981) Acquired resistance to ixodid ticks in laboratory animals. Trans. R. Soc. Trop. Med. Hyg. 75, 147148.CrossRefGoogle ScholarPubMed
Heller-Haupt, A., Varma, R. M. G., Rechav, Y., Langi, A. O. and Trinder, P. K. E. (1987) Immunization of animals against the tick, Amblyomma variegatum using homogenates from unfed larval ticks. Med. Sci. Res. 15, 13711372.Google Scholar
Holley, A. D. and Petney, T. N. (1988) The use of domestic chickens as laboratory hosts of the larvae of the bont tick, Amblyomma hebraeum. Onderstepoort J. Vet. Res. 55, 7576.Google ScholarPubMed
Jordaan, J. O. and Baker, J. A. F. (1981) Survival rate on the host and mating capacity of Amblyomma hebraeum (Koch) male ticks. In Tick Biology and Control (Edited by Whitehead, G. B. and Gibson, J. D.), pp. 115117. Rhodes University, Grahamstown, South Africa.Google Scholar
Jongejan, F., Pegram, R. G., Zivkovic, D., Hensen, E. J., Mwase, E. T., Thielemans, M. J. C., Cosse, A., Niewold, T. A., El Said, A. and Uilenberg, G. (1989) Monitoring of naturally acquired and artificially induced immunity to Amblyomma variegatum and Rhipicephalus appendiculatus ticks under field and laboratory conditions. Exp. Appl. Acarol. 7, 181199.CrossRefGoogle ScholarPubMed
Latif, A. A., Newson, R. M. and Dhadialla, T. S. (1988) Feeding performance of Amblyomma variegatum (Acarina: Ixodidae) fed repeatedly on rabbits. Exp. Appl. Acarol. 5, 8392.CrossRefGoogle ScholarPubMed
McGowan, M. J. (1985) Relationship between skin-sensitizing antibody production in the snowshoe hare, Lepus americanus, and infestations by the rabbit tick, Haemaphysalis leporispalustris (Acari: Ixodidae). J. Parasitol. 71, 513515.CrossRefGoogle ScholarPubMed
McTier, T. L., George, J. E. and Bennett, S. N. (1981) Resistance and cross-resistance of guinea pigs to Dermacentor and ersoni Stiles, D. variabilis(Say), Amblyomma americanum (Linnaeus) anulxodes scapularis Say. J. Parasitol. 67, 813822.CrossRefGoogle Scholar
Morrison, W. I. (1989) Immunological control of ticks and tick-borne parasitic diseases of livestock. Parasitology 98, 569585.CrossRefGoogle ScholarPubMed
Norval, R. A. I. (1974) The life cycle of Amblyomma hebraeum Koch, 1844 (Acarina: Ixodidae). J. Entomol.Soc. Sth. Afr. 37, 357367.Google Scholar
Norval, R. A. I. (1978) Repeated feeding of Amblyomma hebraeum (Acarina: Ixodidae) immatures on laboratory hosts. Host effects on tick yield, engorged weight and engorgement period. J. Parasitol. 64, 910917.CrossRefGoogle ScholarPubMed
Norval, R. A. I., Floyd, R. B. and Kerr, J. D. (1988a) Ability of adults of Amblyomma hebraeum (Acarina: Ixodidae) to feed repeatedly on sheep and cattle. Vet. Parasitol. 29, 351355.CrossRefGoogle ScholarPubMed
Norval, R. A. I., Sutherst, R. W., Kurki, J., Gibson, J. D. and Kerr, J. D. (1988b) The effect of the brown ear-tick Rhipicephalus appendiculatus on the growth of sanga and European breed cattle. Vet. Parasitol. 30, 149164.CrossRefGoogle ScholarPubMed
Norval, R. A. I., Andrew, H. R. and Yunker, C. E. (1989a) Pheromone-mediation of host-selection in bont ticks (Amblyomma hebraeum Koch). Science 243, 364365.CrossRefGoogle ScholarPubMed
Norval, R. A. I., Sutherst, R. W., Jorgensen, O. G., Gibson, J. D. and Kerr, J. D. (1989b) The effect of the bont tick (Amblyomma hebraeum) on the weight gain of Africander steers. Vet. Parasitol. 33, 329341.CrossRefGoogle ScholarPubMed
Norval, R. A. I., Barrett, J. C., Perry, B. D. and Mukheli, A. W. (1992) Economics, epidemiology and ecology: A multidisciplinary approach to the planning and the appraisal of tick and tick-borne disease control in southern Africa. In Tick Vector Biology, Veterinary and Medical Aspects (Edited by Fivaz, B. H. and Petney, T. N.), Springer Verlag Press, (in press).Google Scholar
Randolph, S. E. (1979) Population regulation in ticks: The role of acquired resistance in natural and unnatural hosts. Parasitology 79, 141156.CrossRefGoogle ScholarPubMed
Rechav, Y., Parolis, H., Whitehead, G. B. and Knight, M. M. (1977) Evidence for an assembly pheromone(s) produced by mates of the bont tick, Amblyomma hebraeum (Acarina: Ixodidae). J. Med. Entomol 14, 7178.CrossRefGoogle Scholar
Rechav, Y. and Zeederberg, M. E. (1986) Tick populations of two breeds of cattle under field conditions, with a note on blood components related to host resistance. In Morphology, Physiology and Behavioral Biology of Ticks (Edited by Sauer, J. R. and Hair, J. A.), pp. 445456. Ellis Horwood Ltd., Chichester.Google Scholar
Spickett, A. M. (1992) Breed or genetic resistance of animals to vectors and disease. In Infectious Diseases of Livestock in Southern Africa (Edited by Coetzer, J. A. W., Kriek, N. P. J., Thompson, G. R. and Tustin, R. C.). Oxford University Press, Cape Town (in press).Google Scholar
Strother, G. R., Burns, E. C. and Smart, L. I. (1974) Resistance of purebred Brahman, Hereford, and Brahman x Hereford crossbred cattle to the lone star tick, Amblyomma americanum (Acarina: Ixodidae). J. Med. Entomol. 11, 559563.CrossRefGoogle Scholar
Sutherst, R. W. (1981) Is the Australian pest management approach to tick control relevant to Africa? In Tick Biology and Control (Edited by Whitehead, G. B. and Gibson, J. D.), pp. 7985. Rhodes University, Grahamstown, South Africa.Google Scholar
Sutherst, R. W., Floyd, R. B., Bourne, A. S. and Dallwitz, M. J. (1986) Cattle grazing behavior regulates tick populations. Experientia 42, 194196.CrossRefGoogle Scholar
Tatchell, R. J. (1986) Interactions between ticks and their hosts. In Proceedings of the 6th International Congress of Parasitology (Edited by Howell, M. J.), pp. 597606. Australian Academy of Sciences, Canberra.Google Scholar
Theis, J. H. and Budwiser, P. D. (1974) Rhipicephalus sanguineus: sequential histopathology at the host-arthropod interface. Exp. Parasitol. 36, 77105.CrossRefGoogle ScholarPubMed
Wikel, S. K. and Whelen, A. C. (1986) Ixodid-host immune interaction. Identification and characterization of revelant antigens and tick induced host immunosuppression. Vet. Parasitol. 20, 149174.CrossRefGoogle Scholar
Willadsen, P. (1980) Immunity to ticks. Adv. Parasitol. 18, 293313.CrossRefGoogle ScholarPubMed
Willadsen, P. (1986) Immunological approaches to the control of ticks. In Proceedings of the 6th International Congress of Parasitology (Edited by Howell, M. J.), pp. 671677. Australian Academy of Sciences, Canberra.Google Scholar