Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T18:05:45.324Z Has data issue: false hasContentIssue false

Genetic structure and diversity of western flower thrips, Frankliniella occidentalis in a French bean agroecosystem of Kenya

Published online by Cambridge University Press:  17 April 2017

P. Hondelmann*
Affiliation:
Section Phytomedicine, Institute of Horticultural Production Systems, Leibniz Universität Hannover, Hannover, Germany
J.O. Nyasani
Affiliation:
International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya Department of Crop Protection, Kenya Agricultural and Livestock Research Organisation (KALRO), Embu, Kenya
S. Subramanian
Affiliation:
Department of Crop Protection, Kenya Agricultural and Livestock Research Organisation (KALRO), Embu, Kenya
R. Meyhöfer
Affiliation:
Section Phytomedicine, Institute of Horticultural Production Systems, Leibniz Universität Hannover, Hannover, Germany
*
Get access

Abstract

Western flower thrips (WFT) (Frankliniella occidentalis) is an introduced pest that harms French bean production in Kenya and other countries. Since new WFT management approaches are being developed, a closer look at the genetic makeup of WFT populations can give new insights into source habitats, crop colonization patterns or host plant preferences, which are prerequisites for integrated pest management (IPM) strategies. For this purpose, we used six microsatellite loci to analyse the genetic structure, diversity and gene flow of WFT sampled on French beans, intercrops and weeds in Kenyan French bean production areas. The results of this preliminary study indicate that the available microsatellites are sufficiently polymorphic for more detailed analyses on local dispersal patterns of WFT in Kenya. Even with the limited data set, the results reveal that F. occidentalis populations show considerable genetic differentiation between host plant species but not between regions, which suggests reduced gene flow and a possible development of biotypes. Possible consequences of the results on IPM are discussed.

Type
Research Paper
Copyright
Copyright © icipe 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baez, I., Reitz, S. R., Funderburk, J. E. and Olson, S. M. (2011) Variation within and between Frankliniella thrips species in host plant utilization. Journal of Insect Science 11, 41.Google Scholar
Brødsgaard, H. F. (1994) Insecticide resistance in European and African strains of western flower thrips (Thysanoptera: Thripidae) tested in a new residue-on-glass test. Journal of Economic Entomology 87, 11411146.Google Scholar
Brunner, P. C. and Frey, J. E. (2010) Habitat-specific population structure in native western flower thrips Frankliniella occidentalis (Insecta, Thysanoptera). Journal of Evolutionary Biology 23, 797804. doi:10.1111/j.1420-9101.2010.01946.x.CrossRefGoogle ScholarPubMed
Brunner, P. C., Chatzivassiliou, E. K., Katis, N. I. and Frey, J. E. (2004) Host-associated genetic differentiation in Thrips tabaci (Insecta; Thysanoptera), as determined from mtDNA sequence data. Heredity 93, 364370. doi:10.1038/sj.hdy.6800512.Google Scholar
Cao, Y., Zhi, J., Cong, C. and Margolies, D. C. (2014) Olfactory cues used in host selection by Frankliniella occidentalis (Thysanoptera: Thripidae) in relation to host suitability. Journal of Insect Behaviour 27, 4156. doi:10.1007/s10905-013-9405-5.Google Scholar
Chau, A., Heinz, K. M. and Davies, F. T. Jr (2005) Influences of fertilization on population abundance, distribution, and control of Frankliniella occidentalis on chrysanthemum. Entomologia Experimentalis et Applicata 117, 2739. doi:10.1111/j.1570-7458.2005.00326.x.CrossRefGoogle Scholar
Chevet, E., Lemaître, G. and Katinka, M. D. (1995) Low concentrations of tetramethylammonium chloride increase yield and specificity of PCR. Nucleic Acids Research 23, 33433344.CrossRefGoogle ScholarPubMed
de Kogel, W. J., Bosco, D., van der Hoek, C. and Mollema, M. (1999) Effect of host plant on body size of Frankliniella occidentalis and its correlation with reproductive capacity. European Journal of Entomology 96, 365368.Google Scholar
Doederlein, T. A. and Sites, R. W. (1993) Host plant preferences of Frankliniella occidentalis and Thrips tabaci (Thysanoptera: Thripidae) for onions and associated weeds on the southern high plains. Journal of Economic Entomology 86, 17061713.CrossRefGoogle Scholar
Excoffier, L. and Lischer, H. E. L. (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10, 564567. doi:10.1111/j.1755-0998.2010.02847.x.Google Scholar
Excoffier, L., Smouse, P. and Quattro, J. M. (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479491.Google Scholar
Kedera, C. and Kuria, B. (2005) Invasive alien species in Kenya: Status and management, pp. 199–204. In Identification of Risks and Management of Invasive Alien Species using the IPPC Framework. Proceedings of the workshop on invasive alien species and the International Plant Protection Convention. 22–26 September 2003, Braunschweig, Germany. FAO, Rome, Italy.Google Scholar
Langella, O. (1999) Populations 1.2.32. Distributed by the author. www.bioinformatics.org/project/?group_id=84. Accessed 20 Oct 2015.Google Scholar
Lewis, T. (1997) Major crops infested by thrips with main symptoms and predominant injurious species (Appendix II), pp. 675709. In Thrips as Crop Pests (edited by Lewis, T.). CAB International, Oxon.Google Scholar
Mfuti, D. K., Subramanian, S., van Tol, W. H. M., Wiegers, G. L., de Kogel, W. J., Niassy, S., du Plessis, H., Ekesi, S. and Maniania, N. K. (2016) Spatial separation of semiochemical Lurem-TR and entomopathogenic fungi to enhance their compatibility and infectivity in an autoinoculation system for thrips management. Pest Management Science 72, 131139.Google Scholar
Mirnezhad, M., Schidlo, N., Klinkhamer, P. G. L. and Leiss, K. A. (2012) Variation in genetics and performance of Dutch western flower thrips populations. Journal of Economic Entomology 105, 18161824.CrossRefGoogle ScholarPubMed
Moritz, G., Brandt, S., Triapistyn, S. and Subramanian, S. (2013) Identification and Information Tools for Pest Thrips in East Africa. QAAFI Biological Information Technology (QBIT), The University of Queensland, Brisbane, Australia.Google Scholar
Moritz, G., Mound, L. A., Morris, D. C. and Goldarazena, A. (2004) Pest Thrips of the World on CD-Rom: An Identification and Information System Using Molecular and Microscopial Methods. The University of Queensland, Brisbane, Australia.Google Scholar
Muvea, A. M., Waiganjo, M. M., Kutima, H. L., Osiemo, Z., Nyasani, J. O. and Subramanian, S. (2014) Attraction of pest thrips (Thysanoptera: Thripidae) infesting French beans to coloured sticky traps with Lurem-TR and its utility for monitoring thrips populations. International Journal of Tropical Insect Science 34, 197206.Google Scholar
Nault, B. A., Kain, W. C. and Wang, P. (2014) Seasonal changes in Thrips tabaci population structure in two cultivated hosts. PLoS One 9 (7), e101791. doi:10.1371/journal.pone.0101791.CrossRefGoogle ScholarPubMed
Nderitu, J. H., Kasina, M. J., Nyamasyo, G. N., Waturu, C. N. and Aura, J. (2008) Management of thrips (Thysanoptera: Thripidae) on French beans (Fabaceae) in Kenya: Economics of insecticide applications. Journal of Entomology 5, 148155.Google Scholar
Nderitu, J. H., Wambua, E. M., Olubayo, F., Kasina, M. J. and Waturu, C. N. (2007) Management of thrips (Thysanoptera: Thripidae) infestation on French beans (Phaseolus vulgaris L.) in Kenya by combination of insecticides and varietal resistance. Journal of Entomology 4, 469473.Google Scholar
Nei, M., Tajima, F. and Tateno, Y. (1983) Accuracy of estimated phylogenetic trees from molecular data: II. Gene frequency data. Journal of Molecular Evolution 19, 153170.CrossRefGoogle ScholarPubMed
Niassy, S., Maniania, N. K., Subramanian, S., Gitonga, L. M. and Ekesi, S. (2012a) Performance of a semiochemical-baited autoinoculation device treated with Metarhizium anisopliae for control of Frankliniella occidentalis on French bean in field cages. Entomologia Experimentalis et Applicata 142, 97103. doi:10.1111/j.1570-7458.2011.01203.x.Google Scholar
Niassy, S., Maniania, N. K., Subramanian, S., Gitonga, L. M., Mburu, D. M., Masiga, D. and Ekesi, S. (2012b) Selection of promising fungal biological control agent of the western flower thrips Frankliniella occidentalis (Pergande). Letters in Applied Microbiology 54, 487493. doi:10.1111/j.1472-765X.2012.03241.x.CrossRefGoogle ScholarPubMed
Nyasani, J. O., Meyhöfer, R., Subramanian, S., and Poehling, H.-M. (2012) Effect of intercrops on thrips species composition and population abundance on French beans in Kenya. Entomologia Experimentalis et Applicata 142, 236246.Google Scholar
Nyasani, J. O., Meyhöfer, R., Subramanian, S., and Poehling, H.-M. (2013) Feeding and oviposition preference of Frankliniella occidentalis for crops and weeds in Kenyan French bean fields. Journal of Applied Entomology 137, 204213. doi:10.1111/j.1439-0418.2012.01723.x.Google Scholar
Nyasani, J. O., Subramanian, S., Poehling, H.-M., Maniania, N. K., Ekesi, S. and Meyhöfer, R. (2015) Optimizing western flower thrips management on French beans by combined use of beneficials and imidacloprid. Insects 6, 279296. doi:10.3390/insects6010279.CrossRefGoogle ScholarPubMed
Paetkau, D., Slade, R., Burden, M. and Estoup, A. (2004) Direct, real-time estimation of migration rate using assignment methods: a simulation-based exploration of accuracy and power. Molecular Ecology 13, 5565.Google Scholar
Peakall, R. and Smouse, P. E. (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28, 25372539.Google Scholar
Pearsall, I. A. (2000) Flower preference behaviour of western flower thrips in the Similkameen Valley, British Columbia, Canada. Entomologia Experimentalis et Applicata 95, 303313. doi:10.1046/j.1570-7458.2000.00669.x.Google Scholar
Piry, S., Alapetite, A., Cornuet, J.-M., Paetkau, D., Baudouin, L. and Estoup, A. (2004) GENECLASS2: A software for genetic assignment and first-generation migrant detection. Journal of Heredity 95, 536539.CrossRefGoogle ScholarPubMed
Raymond, M. and Rousset, F. (1995) An exact test for population differentiation. Evolution 49, 12831286.Google Scholar
Rousset, F. (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Molecular Ecology Resources 8, 103106. doi:10.1111/j.1471-8286.2007.01931.x.CrossRefGoogle ScholarPubMed
Rugman-Jones, P. F., Hoddle, M. S. and Stouthamer, R. (2010) Nuclear-mitochondrial barcoding exposes the global pest western flower thrips (Thysanoptera: Thripidae) as two sympatric cryptic species in its native California. Journal of Economic Entomology 103, 877886.Google Scholar
Saitou, N. and Nei, M. (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
Sunnucks, P. and Hales, D. F. (1996) Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution 13, 510524.Google Scholar
Van Oosterhout, C., Hutchinson, W.F.D., Wills, D. P. and Shipley, P. (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535538.Google Scholar
Yang, X.-M., Sun, J.-T., Xue, X.-F., Li, J.-B. and Hong, X.-Y. (2012a) Invasion genetics of the western flower thrips in China: Evidence for genetic bottleneck, hybridization and bridgehead effect. PLoS One 7, e34567. doi:10.1371/journal.pone.0034567.Google Scholar
Yang, X. M., Sun, J. T., Xue, X. F., Zhu, W. C. and Hong, X. Y. (2012b) Development and characterization of 18 novel EST-SSRs from the western flower thrips, Frankliniella occidentalis (Pergande). International Journal of Molecular Sciences 13, 28632876.Google Scholar