Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T21:59:50.712Z Has data issue: false hasContentIssue false

Functional aspects of calmodulin in protozoa

Published online by Cambridge University Press:  19 September 2011

Yoshinori Nozawa
Affiliation:
Department of Biochemistry, Gifu University School of Medicine, Tsuksamachi-40, Gifu, Japan
Seiji Nagao
Affiliation:
Department of Biochemistry, Gifu University School of Medicine, Tsuksamachi-40, Gifu, Japan
Get access

Abstract

Calmodulin is a ubiquitous endogenous calcium receptor in eukaryotic cells and is involved in many different physiological functions. The presence of calmodulins in protozoa has been reported for Tetrahymena and Paramecium. Calmodulin purified from T. pyriformis is composed of 147 amino acids and the amino-terminal is acetylated.Compared to bovine brain calmodulin, there are 11 substitutions and 1 deletion of amino acid residue(s). Besides such structural specificity, Tetrahymena calmodulin (T-CaM) is highly unique in that it has a potential ability to activate the pellicle-bound guanylate cyclase in a calcium-dependent manner. This stimulatory effect is also observed in Paramecium calmodulin (P-CaM). Bovine brain calmodulin represses the T-CaM-dependent activation of guanylate cyclase, indicating that bovine brain CaM exerts its inhibitory influence by interfering with the calmodulin-binding site of this enzyme. The 14S and 30S dyneins extracted from demembranated cilia with EDTA contai ATPase activities which are potentiated by addition of calmodulin. Taken together with its location in cilia, T-CaM appears to regulate the ciliary movement. Moreover, evidence has been provided that calmodulin may be implicated in the glycoprotein biosynthesis. The phosphorylated derivatives of the long chain polyisoprenoid alcohols (dolichol phosphates) are known to act as coenzymes, and the microsomal enzyme involving dolichol phosphorylation is calcium-requiring CTP-dependent and activated by calmodulin. A role for calmodulin in the control of cell growth is postulated by the concerted fluctuations of calmodulin contentand guanylate cyclase activity during the cell cycle in synchronized Tetrahymena cells. In addition, some other possible functions for calmodulin can be considered in protozoa.

Résumé

La calmoduline est un récepteur endogène et ubiquite du calcium dans les cellules eucaryotes et est impliquée dans de nombreuses fonctions physiologiques différentes. La présence de calmodulines chez les Protozoaires a été rapportée pour Tetrahymena et Paramecium. La calmoduline purifiée à partir de T. pyriformis est composée de 147 amino acides et l'aminoacide terminal est acétylé. Par comparaison avec la calmoduline de cerveau de bovin, il y a 11 substitutions et 1 délétion de résidu(s) acide aminé(s). A côté d'une telle spéciflcité structurale, la calmoduline de Tetrahymena (T-CaM) est unique en ce qu'elle a la capacité potentielle d'activer d'une manière calcium-dépendante la guanylate cyclase liée à la pellicule. Cet effet de stimulation est également observé avec la calmoduline de Paramecium (P-CaM). La calmoduline de cerveau de bovin réprime l'activation T-CaM-dépendante de la guanylate cyclases, indiquant que la CaM de cerveau de bovin exerce son influence inhibitrice en interférant avec les sites de fixation de la calmoduline de cette enzyme. Les dyneines 14S et 30S, extraites des cils débarassés de leur membrane par l'EDTA présentent des activités ATPasiques qui sont renforcées par l'addition de calmoduline. En considérant ègalement sa localisation dans les cils, la T-CaM paraît réguler le mouvement cilaire. Deplus, des preuves ont été fournies en ce qui concerne la possible implication dela calmoduline dans la biosynthése des glycoprotéines. Les dérivés phosphorylés des longues chaînes d'alcools polyisoprenoides (phosphates de dolichol) sont connus pour agir comme coenzymes, et l'enzyme microsomale impliquant la phosphorylation des dolichols est calcium-dépendante et CTP-dépendante, et, activée par la calmoduline. On peut postuler un rôle particulier de la calmoduline dans la croissance cellulaire en raison de fluctuations corrélées du contenu en calmoduline et de l'activité de la guanylate cyclase au cours du cycle cellulaire chez les cellules synchronisés de Tetrahymena. De plus, quelques autres fonctions possibles peuvent être considérées chez les protozoaires.

Type
Research Article
Copyright
Copyright © ICIPE 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, B., Osborn, M. and Weber, K. (1978) Specific visualization of the distribution of the calcium dependent regulatory protein of cyclic nucleotide phosphodiesterase (modulator protein)in tissue culture cells by immunofluorescence microscopy: Mitosis and intercellular bridge. Cytobiologie 17, 354364.Google Scholar
Blum, J. J., Hayes, A., Jamieson, G. A. Jr and Vanaman, T. C. (1980) Calmodulin confers calcium sensitivity on dynein AT Pase. J. Cell Biol. 87, 386397.CrossRefGoogle Scholar
Chafouleas, J. G., Deadman, J. R., Munjaal, R. P. and Means, A. R. (1979) Calmodulin: Development and application of a sensitive radioimmunoassay. J. biol. Chem. 254, 1026210267.CrossRefGoogle ScholarPubMed
Cheung, W. G. (1980) Calmodulin plays a pivotal role in cellular regulation. Science 207, 1927.CrossRefGoogle Scholar
Friedman, D. L. (1976) Role of cyclic nucleotides in cell growth and differentiation. Physiol. Rev. 56, 652708.CrossRefGoogle ScholarPubMed
Gandhi, C. R. and Keenan, R. W. (1983) The role of calmodulin in the regulation of dolichol kinase. J. biol. Chem. 258, 76397643.CrossRefGoogle ScholarPubMed
Goldberg, N. D. and Haddox, M. K. (1977) Cyclic GMP metabolism and involvement in biological regulation. A. Rev. Biochem. 46, 823896.CrossRefGoogle ScholarPubMed
Gray, N. C. C., Dickinson, L. R. and Swoboda, B. E. P. (1977) Cyclic GMP metabolism in Tetrahymena pyriformis synchronized by a single hypoxic shock. FEBS Lett. 81, 311314.CrossRefGoogle ScholarPubMed
Inagaki, M., Naka, M., Nozawa, Y. and Hidaka, H. (1983) Hydrophobic properties of Tetrahymena calmodulin related to phosphodiesterase activity. FEBS Lett. 151, 6770.CrossRefGoogle ScholarPubMed
Jamieson, G. A. Jr, Vanaman, T. C. and Blum, J. J. (1979) Presence of calmodulin in Tetrahymena. Proc. natn. Acad. Sci. U.S.A. 76, 64716475.CrossRefGoogle ScholarPubMed
Kakiuchi, S., Sobue, K., Yamazaki, R., Nagao, S., Umeki, S., Nozawa, Y., Yazawa, M. and Yagi, K. (1981) Ca2+ – dependent modulator proteins from Tetrahymena pyriformis, seaanemone, and scallop and guanylate cyclase activation. J. biol. Chem. 256, 1922.CrossRefGoogle Scholar
Keegan, F. P. and Blum, J. J. (1983) Inhibition of growth and of thymidine incorporation into DNA in Tetrahymena by chlorpromazine, pimozide and penfluridol. J. Protozool. 30, 397–02.CrossRefGoogle ScholarPubMed
Klee, C. B. (1984) Calmodulin. Adv. Cyclic Nucleotide Res. 18, 227278.Google Scholar
Klee, C. B., Crouch, T. H. and Richman, P. G. (1980) Calmodulin. A. Rev. Biochem. 49, 489515.CrossRefGoogle ScholarPubMed
Kudo, S., Nakazawa, K. and Nozawa, Y. (1980) Studies on cyclic nucleotide metabolism in Tetrahymena pyriformis; Partial characterization of cyclic AMP– and cyclic GMP–345.CrossRefGoogle Scholar
Kudo, S., Nagao, S., Kamayama, Y. and Nozawa, Y. (1981a) Growth-associated changes in cyclic nucleotide enzymes in Tetrahymena: Involvement of calmodulin. Cell Different. 10, 237242.CrossRefGoogle Scholar
Kudo, S., Nagao, S., Kasai, R. and Nozawa, Y. (1981b) Cell cycle-associated changes of guanylate cyclase activity in synchronized Tetrahymena: A possible involvement of calmodulin in its regulation. J. Protozool. 28, 165167.CrossRefGoogle ScholarPubMed
Kudo, S., Ohnishi, K., Muto, Y., Watanabe, Y. and Nozawa, Y. (1981c) Paramecium calmodulin can stimulate membrane bound guanylate cyclase in Tetrahymena. Biochem. Int. 3, 255263.Google Scholar
Kudo, S., Muto, Y., Nagao, S., Naka, M., Hidaka, H., Sano, M. and Nozawa, Y. (1982) Specificity of Tetrahymena calmodulin in activation of calmodulin-regulated enzymes. FEBS Lett. 149, 271276.CrossRefGoogle ScholarPubMed
Kumagai, H., Nishida, E., Ishiguro, K. and Murofushi, H. (1980) Isolation of calmodulin from the protozoan Tetrahymena pyriformis, by the use of a tubulin–Sepharose 4B affinity column. J. Biochem. 87, 667670.CrossRefGoogle ScholarPubMed
Kung, C., Chang, S.-Y., Satow, Y., Van Houten, J. and Hansma, H. (1975) Genetic dissection of behavior in Paramecium. Science 188, 898904.CrossRefGoogle ScholarPubMed
London, S., Charp, D. A. and Witson, G. L. (1979) Changes in intracellular Ca2+ in relation to cyclic nucleotide levels during the division cycle in synchronized Tetrahymena. J. Cell Biol. 83, 9a.Google Scholar
McCartney, J. E., Blum, J. J. and Vanaman, T. C. (1984) Polyclonal antibody that recognizes calcium-dependent determinants in Tetrahymena calmodulin. Biochemistry 23, 59565963.CrossRefGoogle ScholarPubMed
Means, A. R. and Deadman, J. R. (1980) Calmodulin: An intracellular calcium receptor. Nature 285, 7377.CrossRefGoogle ScholarPubMed
Muto, Y. and Nozawa, Y. (1984) Biochemical characterization of (Ca2+–Mg2+–ATPase) in Tetrahymena microsomes. Biochim. biophys. Acta 777, 6774.CrossRefGoogle Scholar
Muto, Y., Kudo, S. and Nozawa, Y. (1984) Activation of glycogen phosphorylase by cyclic AMP in Tetrahymena pyriformis. J. Protozool. 31, 164166.CrossRefGoogle Scholar
Nagao, S., Suzuki, Y., Watanabe, Y. and Nozawa, Y. (1979) Activation by calcium-binding protein ofguanylate cyclase in Tetrahymena pyriformis. Biochem. biophys. Res. Commun. 90, 261268.CrossRefGoogle ScholarPubMed
Nagao, S., Kudo, S. and Nozawa, Y. (1980) Effects of phenothiazines on the membrane-bound guanylate and adenylate cyclase in Tetrahymena pyriformis. Biochem. Pharmac. 30, 27092712.CrossRefGoogle Scholar
Nagao, S., Banno, Y., Nozawa, Y., Sobue, K., Yamazaki, R. and Kakiuchi, S. (1981) Subcellular distribution of calmodulin and calmodulin-binding sites in Tetrahymena pyriformis. J. Biochem. 90, 897899.CrossRefGoogle ScholarPubMed
Nagao, S., Kudo, S. and Nozawa, Y. (1983) Inhibitory effects of calmodulin antagonists on plasma membrane cyclases in Tetrahymena: Calmodulin-dependent guanylate cyclase and calmodulin-independent adenylate cyclase. Biochem. Pharmac. 32, 25012504.CrossRefGoogle ScholarPubMed
Nozawa, Y. and Thompson, G. A. Jr (1971a) Studies of membrane formation in Tetrahymena pyriformis: II. Isolation and lipid analysis of cell fractions. J. Cell Biol. 49, 712721.CrossRefGoogle ScholarPubMed
Nozawa, Y. and Thompson, G. A. Jr (1971b) Studies of membrane formation in Tetrahymena pyriformis: III. Lipid incorporation into various cellular membranes of logarithmic phase cultures. J. Cell Biol. 49, 722730.CrossRefGoogle Scholar
Nozawa, Y. and Thompson, G. A. Jr (1979) Lipids and membrane organization. In Tetrahymena. In Biochemistry and Physiology of Protozoa (Edited by Levandowsky, M. and Hutner, S. H.), pp. 276338. Academic Press, New York.Google Scholar
Numata, O., Yasuda, T., Hirabayashi, T. and Watanabe, Y. (1980) Localization of a new fiber-forming protein within Tetrahymena pyriformis. J. Biochem. 88, 14991504.CrossRefGoogle ScholarPubMed
Ohnishi, K., Suzuki, Y. and Watanabe, Y. (1982) Studies on calmodulin isolated from Tetrahymena cilia and its localization within the cilium. Expl Cell Res. 137, 217227.CrossRefGoogle ScholarPubMed
Ruben, L., Strickler, J. E., Egwuagu, C. and Patton, C. L. (1984) Structural and biological properties of calmodulin from African trypanosomes. In Molecular Biology of Host-Parasite Interactions (Edited by Agabian, N. and Eisen, H.), pp. 267278. Alan R. Liss, New York.Google Scholar
Satir, B. H., Garofalo, R. S., Gilligan, D. M. and Maihle, N. J. (1980) Possible functions of calmodulin in protozoa. Ann. N.Y. Acad. Sci. 356, 8391.CrossRefGoogle ScholarPubMed
Schultz, J. E. and Klumpp, S. (1984) Calcium/calmodulinregulated guanylate cyclases in the ciliary membranes from Parameciwn and Tetrahymena. Adv. Cyclic Nucleotide Res. 17, 275283.Google Scholar
Shimizu, T., Hatano, M., Nagao, S. and Nozawa, Y. (1982) 43Ca NMR studies of Ca2+-Tetrahymena calmodulin complexes. Biochem. biophys. Res. Commun. 106, 11121118.CrossRefGoogle ScholarPubMed
Shimizu, T., Hatano, M., Muto, Y. and Nozawa, Y. (1984) Interaction of trifluoperazine with Tetrahymena calmodulin: A 19F NMR study. FEBS Lett. 166, 373377.CrossRefGoogle ScholarPubMed
Shimonaka, H. and Nozawa, Y. (1977) Subcellular distribution and thermally-induced transition of adenylate cyclase activity in thermotolerant Tetrahymena surface membranes. Cell Struct. Fund. 2, 8189.CrossRefGoogle Scholar
Strickler, J. E., Ruben, L., Tshudi, G, Richards, F. F., Wilson, K. J. and Patton, C. L. (1986) Primary structure determination of calmodulin from African trypanosomes. J. molec. Biol. In press.Google Scholar
Suzuki, Y., Hirabayashi, T. and Watanabe, Y. (1979) Isolation and electrophoretic properties of a calcium-binding protein from the ciliate Tetrahymena pyriformis. Biochem. biophys. Res. Commun. 90, 253260.CrossRefGoogle ScholarPubMed
Suzuki, Y., Nagao, S., Abe, K., Hirabayashi, T. and Watanabe, Y. (1981) Tetrahymena calcium-binding protein is indeed a calmodulin. J. Biochem. 89, 333336.CrossRefGoogle ScholarPubMed
Suzuki, Y., Ohnish, K., Hirabayashi, T. and Watanabe, Y. (1982) Tetrahymena calmodulin: Characterization of an anti-Tetrahymena calmodulin and the immunofluorescent localization in Tetrahymena. Expl Cell Res. 137, 114.CrossRefGoogle ScholarPubMed
Takagi, T., Nemoto, T., Konishi, K., Yazawa, M. and Yagi, K. (1980) The amino acid sequence of the calmodulin obtained from sea anemone (Metridium senile) muscle. Biochem. biophys. Res. Commun. 96, 377381.CrossRefGoogle Scholar
Takahashi, M., Onimaru, H. and Naitoh, Y. (1980) A mutant of Tetrahymena with non-excitable membrane. Proc. Jap. Acad. 56, 585590.CrossRefGoogle Scholar
Umeki, S., Nagao, S. and Nozawa, Y. (1981) The purification and identification of calmodulin from human placenta. Biochim. biophys. Ada 674, 319326.CrossRefGoogle ScholarPubMed
Voichick, J., Elson C, Granner, D. and Shrago, E. (1973) Relationship of adenosine 3′, 5′-monophosphate to growth and metabolism of Tetrahymena pyriformis. J. Bad. 115, 6872.Google ScholarPubMed
Wallace, R. and Cheung, W. Y. (1979) Calmodulin: Production of antibody in rabbit and development of a radioimmunoassay. J. biol. Chem. 254, 65646571.CrossRefGoogle ScholarPubMed
Watanabe, Y. and Nozawa, Y. (1982) Possible roles of calmodulin in a ciliated protozoan Tetrahymena. In Calcium and Cell Function (Edited by Chung, W. Y.), pp. 297323. Academic Press, New York.CrossRefGoogle Scholar
Watterson, D. M., Sharief, F. and Vanaman, T. (1980) The complete amino acid sequence of the Ca2+-dependent modulator. J. biol. Chem. 255, 962975.CrossRefGoogle ScholarPubMed
Yazawa, M., Yagi, K., Toda, H., Kondo, K., Narita, K., Yamazaki, R., Sobue, K., Kakiuchi, S., Nagao, S. and Nozawa, Y. (1981) The amino acid sequence of the Tetrahymena calmodulin which specifically interacts with guanylate cyclase. Biochem. biophys. Res. Commun. 99, 10511057.CrossRefGoogle ScholarPubMed