Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T01:22:27.866Z Has data issue: false hasContentIssue false

Evaluation of Synergistic Interaction between Bacillus sphaericus and a Neem-based Biopesticide on Bsph-Susceptible Culex Quinquefasciatus Say Larvae

Published online by Cambridge University Press:  19 September 2011

S. Poopathi
Affiliation:
Centre for Research in Medical Entomology (Indian Council of Medical Research), 4 Sarojini Street, Chinna Chokkikulam, Madurai 625002, Tamil Nadu, South India
T. R. Mani
Affiliation:
Centre for Research in Medical Entomology (Indian Council of Medical Research), 4 Sarojini Street, Chinna Chokkikulam, Madurai 625002, Tamil Nadu, South India
D. R. Rao
Affiliation:
Centre for Research in Medical Entomology (Indian Council of Medical Research), 4 Sarojini Street, Chinna Chokkikulam, Madurai 625002, Tamil Nadu, South India
L. Kabilan
Affiliation:
Centre for Research in Medical Entomology (Indian Council of Medical Research), 4 Sarojini Street, Chinna Chokkikulam, Madurai 625002, Tamil Nadu, South India
Get access

Abstract

—Bioassays were conducted with Bacillus sphaericus (Neide) 1593M (Bsph) and a neem based biopesticide formulation, Neemtox® (0.03% azadirachtin), independently and in different combinations, to evaluate any synergistic effects on Culex quinquefasciatus Say (Diptera: Culicidae) larvae susceptible to Bsph. The results indicated that the two biopesticides have no synergistic interaction on the larvae. These results are discussed in light of earlier experiments with resistant C. quinquefasciatus, in which Bspfc-Neemtox synergism was seen.

Résumé

—Des bioessais ont été conduits séparément et selon différentes combinaisons, avec Bacillus sphaericus (Neide) 1593M (Bsph) et une formulation de biopesticide à base de neem., Neemtox® (0.03% azadirachtine), pour évaluer d'éventuels effets synergiques sur des larves de Culex quinquefasciatus Say (Diptera: Culicidae) sensibles au Bsph. Les résultats indiquent que les deux biopesticides n'ont pas d'action synergique sur les larves. On discute de ces résultats à la lumière d'expérimentations antérieures conduites sur des C. quinquefasciatus résistants pour lesquels un synergisme Bsph-Neemtox a été observe.

Type
Research Articles
Copyright
Copyright © ICIPE 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, W.S. (1925) A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18, 265267.CrossRefGoogle Scholar
Anonymous (1985) Informal consultation on the development of Bacillus sphaericus as a microbial larvicide. TDR / BCV / sphaericus / 85.3. WHO/VBC 1–24.Google Scholar
Benz, G. (1971) Synergism of micro-organisms and chemical insecticides, pp. 327374. In Microbial Control of Insects and Mites (Edited by Burges, H.D. and Hussay, N.W.). Academic Press, New York, USA.Google Scholar
Broadwell, A.H., Baumann, L. and Baumann, P. (1990a) The 42 and 51 – Kilodalton mosquitocidal proteins of Bacillus sphaericus 2362: Construction of recombinants with enhanced expression and in-vivo studies of processing and toxicity. J. Bacteriol. 172, 22172223.CrossRefGoogle ScholarPubMed
Broadwell, A.H., Clark, M.A., Baumann, L. and Baumann, P. (1990b) Deletion analysis of the 42-kDa component of the B. sphaericus binary toxin, pp. 1516. In Mosq. Contr. Res. Ann. Rep. University of California, Riverside, USA.Google Scholar
Georghiou, G.P., Malik, J.I., Wirth, M. and Sainto, K. (1992) Characterization of resistance of Culex quinque-fasciatus to the insecticidal toxins of Bacillus sphaericus (strain 2362), pp. 3435. In Mosq. Control Res. Ann. Rep. University of California, Riverside, USA.Google Scholar
Georghiou, G.P., Wirth, M., Tran, H., Ferrari, J.A. and Rodriguez – Maciel, J.C. (1990) Research on managing resistance to biopesticides and synthetic insecticides in mosquitoes, pp. 6467. In Mosq. Control. Res. Ann. Report. University of California, Riverside, USA.Google Scholar
Gaffar, S.A. and Kushwaha, K.S. (1994) Synergistic interaction of Bacillus thuringiensis Berliner with some insecticides against the tobacco caterpillar, Spodoptera litura Fab on cauliflower. J. Biol. Contr. 8, 98101.Google Scholar
Hardman, J.M. and Gaul, S.O. (1990) Mixtures of Bacillus thuringiensis and pyrethroids controlling winter moth (Lepidoptera: Geometridae) in orchards without causing outbreaks of mites. J. Econ. Entotnol. 83, 920936.CrossRefGoogle Scholar
Lappa, N.V. (1964) Action of bacterial preparation Dendrtobacillin on gold tail larvae. Zekhist. Roslin (Kiev). 1, 6572.Google Scholar
Lee, M.K., Curtis, A., Alcantra, E. and Dean, D.H. (1996) Synergistic effect of the Bacillus thuringiensis toxin Cry I Aa on the gypsy moth, Lymantria dispar. Appl. Environ. Microbiol. 62, 583586.CrossRefGoogle Scholar
Poopathi, S., Mani, T.R., Rao, D.R., Baskaran, G. and Kabilan, L. (1999a) Cross-resistance to Bacillus sphaericus strains in Culex quinquefasciatus resistant to B. sphaericus 1593. South East Asian J. Tropmed. Publ. Hlth. 30, 477481.Google Scholar
Poopathi, S., Mani, T.R., Rao, D.R., Baskaran, G. and Kabilan, L. (1999b) Evaluation of synergestic interaction between Bacillus sphaericus and Bacillus thuringiensis var. israelensis against Culex quinquefasciatus resistant and susceptible to B. sphaericus 1593M. J. Ecobiol. 11, 289298.Google Scholar
Poopathi, S., Muthukrishnan, J. and Baskaran, G. (1997) Synergism by azadirachtin based biopesticide to B. sphaericus resistant field population of Culex quinquefasciatus for management of resistance, pp. 7277. In NatL. Acad. Vector and Vector Borne Diseases. Proc. II Symp. Vectors & Vector Borne Diseases. 16–19 March 1997, Goa, India (Edited by Sharma, V.P., Satyanarayana, K. and Dash, A.P.). Natl. Acad. Vectors and Vector Borne Diseases, RMRC, Bhubaneswar, India.Google Scholar
Rao, D.R., Mani, T.R., Rajendran, R., Joseph, A.S. and Gajanana, A. (1995) Development of a high level resistance to Bacillus sphaericus in a field population of Culex quinquefasciatus from Kochi, India. J. Am. Mosq. Contr. Assoc. 11, 15.Google Scholar
Regev, A., Keller, M., Strighov, N., Sneh, B., Prudovsky, E., Chet, I., Ginzberg, I., Koncz – Kalman, Z., Koncz, C., Schell, J. and Zilberstein, A. (1996) Synergism of Bacillus thuringiensis ∂ - endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl. Environ. Microbiol. 62, 35813586.CrossRefGoogle Scholar
Rodcharoen, J. and Mulla, M.S. (1994) Resistance development in Culex quinquefasciatus (Diptera: Culicidae) to the microbial agent Bacillus sphaericus. J. Econ. Entomol. 87, 11331140.CrossRefGoogle Scholar
Rodcharoen, J. and Mulla, M.S. (1996) Cross-resistance to Bacillus sphaericus strains in Culex quinquefasciatus. J. Amer. Mosq. Contr. Assoc. 12, 247250.Google ScholarPubMed
Sawicki, R.M. (1962) Insecticidal activity of pyrethrum extract and its four insecticidal constituents against houseflies. III. Knock – down and recovery of flies treated with pyrethrum extract with and without piperonyl butoxide. J. Sci. Food. Agric. 13, 283291.CrossRefGoogle Scholar
Scott, J.G. and Georghiou, G.P. (1984) Influence of temperatures on knock down, toxicity and resistance to pyrethroids in the housefly Musca domestica. Pestic. Biochem. Physiol. 21, 5362.Google Scholar
Tabashnik, B.E. (1992) Evaluation of synergism among Bacillus thuringiensis toxins. Appl. Environ. Microbiol. 58, 33433346.CrossRefGoogle ScholarPubMed
Van Frankenhuyzen, K., Gringorton, J.L., Milne, R.E., Gauthier, D., Pusztal, M., Brousseau, R. and Masson, L. (1991) Specificity of activated Cry IA proteins from Bacillus thuringiensis subsp. kurstaki HD-1 for defoliating forest Lepidoptera. Appl. Environ. Microbiol. 57, 16501655.CrossRefGoogle Scholar
Wu, D. and Chang, F. N. (1985) Synergism in mosquito-cidal activity of 26 and 65 kDa proteins from Bacillus thuringiensis subsp. israelensis crystal. FEBS Microbiol. Lett. 190, 232236.CrossRefGoogle Scholar
Yu, Y.M., Ohba, M. and Aizawa, K. (1987) Synergistic effects of the 65 and 25 kilodalton proteins of Bacillus thuringiensis PG-14 (serotype 8 A: 8 B) in mosquito larvicidal activity. J. Gen. Appl. Microbiol. 33, 459462.CrossRefGoogle Scholar