Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T01:28:24.599Z Has data issue: false hasContentIssue false

Effects of Protein Fractions from Zea Mays L. on Development and Survival of the Mexican Bean Weevil, Zabrotes subfasciatus (Boh.)

Published online by Cambridge University Press:  19 September 2011

M.L.R. Macedo
Affiliation:
Laboratrio de Purificação de Proteínas e suas Funções Biológicas, Departamento de Ciências Naturais, Universidade Federal de Mato Grosso do Sul, Caixa Postal 210, Av. Olinto Mancini, 1662, CEP 79603–011, Três Lagoas, Mato Grosso do Sul, Brazil
D.C.S. Damico
Affiliation:
Laboratrio de Purificação de Proteínas e suas Funções Biológicas, Departamento de Ciências Naturais, Universidade Federal de Mato Grosso do Sul, Caixa Postal 210, Av. Olinto Mancini, 1662, CEP 79603–011, Três Lagoas, Mato Grosso do Sul, Brazil
Get access

Abstract

A study was conducted to elucidate the effects of protein fractions isolated from maize (Zea mays L.) seeds on the development and survival of the Mexican bean weevil, Zabrotes subfasciatus (Boh.) (Coleoptera: Bruchidae). Maize seeds were fractionated into albumins, globulins, prolamins, glutelins and a residue and the bruchids reared on artificial seeds composed of susceptible background bean flour enriched with the different protein fractions. Survival (as indicated by LD50) and development (as indicated by WD50) of 20-day-old larvae of the bruchid were negatively affected by most of the fractions. The albumins and globulins were the most detrimental to Z. subfasciatus, significantly affecting both its survival and development.

Résumé

Cette étude a été menée afin d'identifier des effet des fractions protéiniques des semences de Zea mays le dévelopement et là survie du bruchide du niébé, Zabrotes subfasciatus. Les semences ont été fractionnées en albumines, globulines, prolamines, glutélines et en un résidu. Des insectes ont été élevés sur des graines artificielles composées à partir d'une farine de haricot susceptible enrichie avec les différentes fractions protéiniques. La survie (telle qu'indiquée par là CL50) et le développment (tel qu'indiqué par WD50) des larvaes a âgées de 20 jours ont été négativement affectés par là plupart des fractions. Les albumines et globulines ont été les plus nocives, affectant à là fois là survie et le développment des larves.

Type
Research Articles
Copyright
Copyright © ICIPE 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andrade, L. B. S., Flores, V. M. Qv Sales, M. P., Morais, R. A., Blanco-Labra, A. and Xavier-Filho, J. (1995) Effect of protein fractions isolated from cereal grains on the development and survival of the cowpea weevil, Callosobruchus maculatus. Insect Sci. Applic. 16, 171176.Google Scholar
Applebaum, S. W., Gestetner, B. and Birk, Y. (1969) Physiological aspects of host specificity in the Bruchidae IV. Developmental incompatibility of soybeans for Callosobruchus. J. Insect Physiol. 11, 611616.CrossRefGoogle Scholar
Bernfeld, P. (1965) Amylases, alpha and beta, pp. 149158. In Methods in Enzymology Vol. I (Edited by Collowick, S. P. and Kaplan, N. O.). Academic Press, New York.Google Scholar
Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72, 248254.CrossRefGoogle ScholarPubMed
Bright, S. W. S. and Shewry, P. R. (1983) Improvement of protein quality in cereals. CRC Cut. Rev. Plant Sci. 1, 4993.CrossRefGoogle Scholar
Brunce, N. A . C., White, R. P. and Shewry, P. R. (1985) Variation in estimates of molecular weights of cereal prolamins by SDS-PAGE. J. Cereal Chem. 3, 131142.CrossRefGoogle Scholar
Daoust, R. A., Roberts, D. A. and Neves, B. P. (1985) Distribution, biology and control of cowpea pests in Latin America, pp. 249264. In Cowpea Research, Production and Utilization (Edited by Singh, S. R. and Rachie, K. O.). John Wiley, London.Google Scholar
Davies, J. C. (1972) A note on the occurrence of Zabrotes subfasciatus (Coleoptera:Bruchidae) on legumes in Uganda. East Afr. Ague. For. J. April, 71, 294299.CrossRefGoogle Scholar
Fabre, C., Causse, H., Mourey, L., Konin, K. X. J., Rivière, M., Hendriks, H., Puzo, G., Samama, J. P. and Rougé, P. (1998) Characterization and sugar-binding properties or arcelin-1, an insecticidal lectin-like protein isolated from kidney bean (Phaseolus vulgaris L. cv. RAZ-2) seeds. Biochem. J. 329, 551560.CrossRefGoogle ScholarPubMed
Gatehouse, A. M. R., Dewery, F. M., Dove, J., Fenton, K. A. and Pustai, A. (1984) Effect of seed lectins from Phaseolus vulgaris on the development of larvae of Callosobruchus maculatus; mechanism of toxicity. J. Insect Physiol. 33, 843850.CrossRefGoogle Scholar
Grossi de Sa, M. F., Mirtkov, T. E., Ishimoto, M., Coluaci, G., Bateman, K. S. and Chrispeels, M. J. (1997) Molecular characterization of a bean oc-amylase inhibitor that inhibits the α-amylase of the Mexican bean weevil Zabrotes subfasciatus. Planta 204, 295303.CrossRefGoogle Scholar
Hilder, V. A., Gatehouse, A. M. R., Sheerman, S. E., Barker, R. F. and Boulter, D. (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330, 160163.CrossRefGoogle Scholar
Ishimoto, M. and Chrispeels, M. J. (1996) Protective mechanisms of the Mexican bean weevil against high levels of α-amylase inhibitor in the common bean, Phaseolus vulgaris. Plant Physiol. 11, 393401.CrossRefGoogle Scholar
Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature 227, 680685.CrossRefGoogle Scholar
Macedo, M. L. R. and Xavier-Filho, J. (1992) Purification and partial characterization of trypsin inhibitors from seeds of Clitoria ternatea. J. Sci. Food Agric. 58, 5558.CrossRefGoogle Scholar
Macedo, M. L. R., Andrade, L. B. S., Moraes, R. A. and Xavier-Filho, J. (1993) Vicilin variants and the resistance of cowpea (Vigna unguiculata) seeds to the cowpea weevil (Callosobruchus maculatus). Comp. Biochem. Physiol. 105C, 8994.Google Scholar
Macedo, M. L. R., Fernandes, K. V. S., Sales, M. P. and Xavier-Filho, J. (1995) Purification and properties of storage proteins (vicilins) from cowpea (Vigna unguiculata) seeds which are susceptible or resistant to the bruchid beetle Callosobruchus maculatus. Brazilian J. Med. Biol. Res. 28, 183190.Google ScholarPubMed
MacGaughey, W. H. and Whalon, M. E. (1992) Managing insect resistance to Bacillus thuringiensis toxins. Science 258, 14511455.CrossRefGoogle Scholar
McFarlane, J. A. and Wearing, A. J. S. (1967) A means of differentiating between Acanthoscelides obtectus (S.) and Zabrotes subfasciatus (B.) (Coleoptera: Bruchidae) in white haricot beans at the pupal stage. J. Stored Prod. Res. 3, 261262.CrossRefGoogle Scholar
Meik, J. and Dobie, P. (1986) The ability of Zabrotes subfasciatus to attack cowpeas. Entomol. Exp. Appl. 42, 151158.CrossRefGoogle Scholar
Minney, B. H. P., Gatehouse, A. M. R., Dobie, P., Dendy, J., Cardona, C. and Gatehouse, J. A. (1990) Biochemical bases of seed resistance to Zabrotes subfasciatus (bean weevil) in Phaseolus vulgaris (common bean): A mechanism for arcelin toxicity. J. Insect Physiol. 36, 757767.CrossRefGoogle Scholar
Osborn, T. C., Blake, T., Gepts, P. and Bliss, F. A. (1986) Bean arcelin 2. Genetic variation, inheritance and linkage relationships of a novel seed protein of Phaseolus vulgaris L. Theor. Appl. Genet. 71, 847855.CrossRefGoogle ScholarPubMed
Pimbert, M. P. (1985) Reproduction and oviposition preferences of Zabrotes subfasciatus stocks reared from two host plant species. Entomol. Exp. Appl. 38, 273276.CrossRefGoogle Scholar
Sales, M. P., Macedo, M. L. R. and Xavier-Filho, J. (1992) Digestibility of cowpea (Vigna unguiculata) vicilins by pepsin, papain and bruchid (insect) midgut proteinases. Comp. Biochem. Physiol. 103B, 945950.Google Scholar
Terra, W. R., Ferreira, C. and Bianchi, A. G. (1977) Action pattern, kinetical properties and electrophoretical studies on an α-amylase present in midgut homogenates from Rhyncosciara americana (Diptera) larvae. Comp. Biochem. Physiol. 56B, 201209.Google Scholar
Zhu, K., Huesing, J. E., Shade, R. E., Bressan, R. A., Hasegawa, P. M. and Murdock, L. L. (1996) An insecticidal N-acetylglucosamine-specific lectin gene from Griffonia simplicifolia (Leguminosae). Plant Physiol. 110, 195202.CrossRefGoogle ScholarPubMed