Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T23:25:47.520Z Has data issue: false hasContentIssue false

Effect of temperature on the ovarian development in the pupa of Glossina pallidipes Austen II: Influence on the reversed sequence of egg follicle maturation

Published online by Cambridge University Press:  19 September 2011

Mohamed M. Mohamed-Ahmed
Affiliation:
International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi, Kenya
Leonard H. Otieno
Affiliation:
International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi, Kenya
Joseph Muchiri
Affiliation:
International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi, Kenya
Get access

Abstract

The egg follicle C of the left ovary was developing first, indicating reversed ovarian sequences in 5.8, 4.8, 4.2, 2.2, 1.1 and 2.0% newly-emerged female G. pallidipes from pupae kept at 29.5 ± 0.5, 27.5 ± 1.0, 25.0 ± 0.5, 22.5 ± 0.5, 20.5 ± 1.0°C and then maintained at ambient temperature (19 to 31°C) in the local colony. There was a highly significant positive correlation between the frequency of reversed ovarian sequences in flies and temperature in the range 19.5–30.0°C. The incidence of the abnormality was very low (0.2%) in wild-caught females from the Lambwe Valley, probably reflecting the constancy of favourable temperatures in that location. Old females with altered ovarian sequence had apparently both normal pregnancy and alternate maturation of eggs between the ovaries. This appears to be the first report suggestive of a temperature-induced reversed sequential ovarian development in Glossina.

Résumé

Le follicule C de l'ovaire 1gauche de la mouche tsé-tsé Glossina pallidipes est le premier à se développer, indiquant ainsi un développement séquentiel anormal dans 5,8, 4,8 4,2, 2,2, 1,1 et 2,0% de femelles émergeant des pupes maintenues à 29,5 ± 0,5, 27,5 ± 1,0, 22,5 ± 0,5, 20,5 ± 1,0°C et puis à la température ambiante (19 à 31°C à l'insectarium). Une corrélation significativement positive entre la fréquence de développement ovarien anormal chez les insectes et les températures de 19,5 à 30,0°C a été observée. La fréquence d'anomalies chez les femelles capturées à Lambwe Valley était très basse (0,2%), reflétant sans doute la stabilité des températures favorables dans cette localité. Les femelles agées ayant un développement ovarien séquentiel anormal ont à la fois une gestation normale et une maturation alternée entre les deux ovaires. Il est ainsi démontré pour la première fois que la température induit un développement ovarien séquentiel anormal chez Glossina.

Type
Research Articles
Copyright
Copyright © ICIPE 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bursell, E. (1960) The effect of temperature on the consumption of fat during pupal development in Glossina. Bull. Ent. Res. 51, 583598.CrossRefGoogle Scholar
Challier, A. (1965) Amelioration de la methode de determination de l'age physiologique des glossines. Etudes faits sur Glossina palpalis. Bull. soc. exot. 58, 250259.Google Scholar
Glasgow, J. P. (1970) In Mulligan, H. W. (ed). The African Trypanosomiases, ed, 905 pp. George Allen and Unwin/Ministry of Overseas Development, London.Google Scholar
Madubunyi, L. C. (1978) Relative frequency of reproductive abnormalities in a natural population of Glossina morsitans morsitans (Diptera Glossinidae) in Zambia. Bull. Ent. Res. 68, 437442.CrossRefGoogle Scholar
Ochieng, R. S., Otieno, L. H. and Banda, H. K. (1987) Performance of the tsetse fly Glossina pallidipes reared under simple laboratory conditions. Entomol. Exp. Appl. 45, 265270.CrossRefGoogle Scholar
Rogers, D. (1979) Tsetse population dynamics and distribution: A new analytical approach. J. Anim. Ecol. 48, 825849.CrossRefGoogle Scholar
Ryan, L. and Molyneux, D. H. (1982) Reproductive statistics of a natural population of Glossina morsitans centralis. Ann. Trop. Med. Parasitol. 76, 215218.CrossRefGoogle ScholarPubMed
Saunders, D. S. (1960a) Ovaries of Glossina morsitans. Nature 185, 121122.CrossRefGoogle ScholarPubMed
Saunders, D. S. (1960b) The ovulation cycle in Glossina morsitans Westwood and a possible method of age determination of female tsetse by the examination of their ovaries. Trans R. Soc. Lond. 112, 221238.CrossRefGoogle Scholar
Saunders, D. S. (1962) Age determination for female tsetse flies and the age compositions of samples of G. pallidipes, G. p. fuscipes and G. brevipalpis. Bull. Ent. Res. 53, 221238.CrossRefGoogle Scholar
Tobe, S. S. and Langley, P. A. (1978) Reproductive physiology of Glossina. Annu. Rev. Ent. 23, 283308.CrossRefGoogle ScholarPubMed
Turner, D. A. and Snow, W. F. (1984) Reproductive abnormality and loss in natural population of Glossina pallidipes (Diptera: Glossinidae) in Kenya. Bull. Ent. Res. 74, 299309.CrossRefGoogle Scholar
Turner, D. A. and Brightwell, R. (1986) An evaluation of a sequential aerial spraying against Glossina pallidipes Austen (Diptera: Glossinidae) in the Lambwe Valley of Kenya: Aspects of post-spray recovery and evidence of natural population regulation. Bull. Ent. Res. 76, 331349.CrossRefGoogle Scholar
Van Sickle, J. and Phelps, R. J. (1988) Age distribution and reproductive status of declining and siationary populations of Glossina pallidipes (Diptera: Glossinidae) in Zimbabwe. Bull. Ent. Res. 78, 5161.CrossRefGoogle Scholar