Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T20:02:04.806Z Has data issue: false hasContentIssue false

Effect of parasitization by Apanteles flavipes on the biochemical composition of Diacrisia obliqua

Published online by Cambridge University Press:  19 September 2011

J. Muthukrishnan
Affiliation:
P.G. Department of Zoology, A.P.A. College, Palni 624 602, India
M. Senthamizhselvan
Affiliation:
P.G. Department of Zoology, A.P.A. College, Palni 624 602, India
Get access

Abstract

Infection of Diacrisia obliqua larva by Apanteles flavipes resulted in a significant decrease in the lipid and protein content of the host. In about 8 days the parasitoid larvae developing in the host not only utilized these components of the host but also depressed food consumption of the host. Consequently, at the time of emergence of the parasitoid larvae, the host tissue consisted of simply carcass. The parasitoid larvae utilized lipids at the rate of 0.9–10.0 μg/mg/day.

Résumé

L'infection de la larve Diacrisia obliqua par Apanteles flavipes est le resultat d'un decroissement d'une façon notable du lipid et protein contenu deus le D. obliqua. Durant huit jours la larve parasitoide, grandussante dans le receptacle n'utilise pas seulement les composes des tissu de D. obliqua maie resuit la quantite de la nourriture de la larve parasitoide le tissus de D. obliqua est reduit a une simple carcass. La larve parasitoide utilise le lipid au taux de 0.9–10.0 μg/mg/day.

Type
Research Articles
Copyright
Copyright © ICIPE 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beckage, N. E. and Riddiford, L. M. (1978) Developmental interactions between the tobacco hornworm Manduca sexta and its braconid parasite Apanteles congregatus. Ent. Exp. Appl. 23, 139151.CrossRefGoogle Scholar
Beckage, N. E. and Riddiford, L. M. (1983) Growth and development of the endoparasitic wasp Apanteles congre-gatus: Dependence on host nutritional status and parasitic load. Physiol. Ent. 8, 231241.CrossRefGoogle Scholar
Dahlman, D. L. (1975) Trehalose and glucose levels in the haemolymph of diet-reared, tobacco leaf-reared and parasitized tobacco hornworm larvae. Comp. Biochem. Physiol. 50A, 165167.CrossRefGoogle Scholar
Dahlman, D. L. and Greene, J. R. (1981) Larval haemolymph protein patterns in tobacco hornworms parasitized by Apanteles congregatus. Ann. ent. Soc. Am. 74, 130133.CrossRefGoogle Scholar
Dahlman, D. L. and Vinson, S. B. (1975) Trehalose and glucose levels in the haemolymph of Heliothis virescens parasitized by Microplitis croceipes or Cardiochiles nigriceps. Comp. Biochem. Physiol. 52B, 465468.Google Scholar
Dahlman, D. L. and Vinson, S. B. (1976) Trehalose level in the haemolymph of Heliothis virescens parasitized by Campoletis sonorensis. Ann. ent. Soc. Am. 69, 523524.CrossRefGoogle Scholar
Dahlman, D. L. and Vinson, S. B. (1977) Effect of calyx fluid from an insect parasitoid on host haemolymph dry weight and trehalose content. J. Invertebr. Path. 29, 227229.CrossRefGoogle Scholar
Dahlman, D. L. and Vinson, S. B. (1980) Glycogen content In Heliothis virescens parasitized by Microplitis croceipes. Comp. Biochem. Physiol. 66A, 625630.CrossRefGoogle Scholar
Doutt, R. L. (1959) The biology of parasitic Hymenoptera. A. Rev. Ent. 4, 161182.CrossRefGoogle Scholar
Fisher, R. C. (1971) Aspects of the physiology of endoparasitic Hymenoptera. Biol. Rev. 46, 243278.CrossRefGoogle Scholar
Folch, J., Lee, M. and Sloane-Stanely, G. H. (1957) A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497509.CrossRefGoogle ScholarPubMed
Fuhrer, E. (1976) Parasitare Steuerung des Futterbedarbs van Kohlweiblings Raupen durch Apanteles glomeratus L. Z. Angew. Ent. 82, 228.CrossRefGoogle Scholar
Guillot, F. S. and Vinson, S. B. (1973) Effect of parasitism by Cardiochiles nigriceps on food consumption and utilization by Heliothis virescens. J. Insect Path. 19, 20732082.CrossRefGoogle Scholar
Handel, E. van (1965) Microseparation of glycogen, sugars and lipids. Anal. Biochem. 11, 266271.CrossRefGoogle ScholarPubMed
Hunter, K. and Stoner, A. (1975) Copidosoma truncatellum: Effect of parasitization on food consumption of larval Trichoplusia ni. Environ. Ent. 4, 381382.CrossRefGoogle Scholar
Karnavar, G. K. (1984) Studies on the influence of the parasitoid, Apanteles glomeratus on the metabolite levels of the host Pieris brassicae. Insect Sci. Applic. 5, 99100.Google Scholar
Muthukrishnan, J. and Pandian, T. J. (1987) Insect energetics: In Animal Energetics (Edited by Pandian, T. J. and Verhberg, F. J.), Academic Press, New York (in press).Google Scholar
Pandian, T. J. (1973) Food intake and energy expenditure patterns in two insect primary consumers. Curr. Sci. 42, 423–25.Google Scholar
Parker, F. D. and Pinnell, R. E. (1973) Effect on food consumption of the imported cabbageworm when parasitized by two species of Apanteles. Environ. Ent. 2, 216219.CrossRefGoogle Scholar
Rahman, M. (1970) Effect of parasitism on food consumption of Pieris rapae larvae. J. econ. Ent. 63, 820821.CrossRefGoogle Scholar
Roth, A. (1958) Quantitative Organische Microanalyse. Springer, Wein.Google Scholar
Senthamizhselvan, M. (1987) Physiological studies on chosen pests, predators and parasites. Ph.D. thesis, Madurai Kamaraj University, Madurai.Google Scholar
Senthamizhselvan, M. and Muthukrishnan, J. (1983) Changes in protein patterns during the moulting cycle and metamorphosis of Diacrisia obliqua. Entomon 8, 293295.Google Scholar
Vinson, S. B. and Iwantsch, G. F. (1980) Host regulation by insect parasitoids. Q. Rev. Biol. 55, 143165.CrossRefGoogle Scholar
Waldbauer, G. P. (1968) The consumption and utilization of food by insects. Adv. Insect Physiol. 5, 229288.CrossRefGoogle Scholar